

Learning from Linux

Internet, innovation and the new economy

Part I: Empirical and descriptive analysis of the open source model

Working paper, April 15, 2000. Please do not quote without permission.

Ilkka Tuomi

ituomi@uclink4.berkeley.edu

Abstract:

This paper describes some key principles that underlie development of the Linux

operating system, and discusses their implications for innovation research. Using

Linux as a case example, I will discuss organizational, institutional, economic,

cultural, and cognitive aspects of the open source development model and

technological change.

 2

Introduction

According to user surveys, the Linux operating system is rated as the best operating

system available. It is considered to be more reliable than its main competitors. Its

functionality is claimed to be better, and according to many experts, new releases of Linux

implement innovative ideas faster than its competitors. In other words, it is argued that

Linux development creates complex new technology better and faster than the biggest

firms in software industry.1 Yet, Linux also seems to break many conventional

assumptions that underlie research on innovation and technological change. Linux is

developed by an informal self-organizing social community. There is no well-defined

market or hierarchy associated with it. Most of Linux development occurs without

economic transactions. Instead of getting paid for their efforts, the developers often spend

a lot of money and effort to be able to contribute to the advancement of the development

project.

The open source development model, which underlies Linux, has attracted increasing

attention in the last years. Today, Linux is considered to be a serious threat to Microsoft’s

market dominance in operating systems. More generally, open source development

projects have in recent years had major impact in software and internet-based industries.

For example, over 60 per cent of Internet connected Web servers were open source

Apache servers in March 2000. As can be seen from Figure 1, the second most popular

Microsoft servers were about one third as popular with 21 per cent. Some open source

projects, such as Sendmail and Emacs, have achieved large market shares, making it

difficult for commercial enterprises to enter the market. The Internet Engineering Task

Force, which defines standards for the Internet, has also used an open source approach

since its formation in 1986 (Bradner, 1999). Several commercial software firms have tried

to adopt aspects of the open source model. For example, Netscape announced in 1998

that it would distribute the source code of Netscape communicator with open source

1 http://www.uk.linux.org/LxReport.html

 3

license. IBM decided to use the open source Apache server as the core of its Web server

offers. Red Hat, in turn, thrives on packaging Linux distributions, and producing added

value for Linux users. In all these cases, business firms are experimenting with ways to

benefit from innovation that occurs in the open source communities. Instead of traditional

economic competition, such initiatives rely on symbiotic relationships, and on the

willingness of developer communities to collaborate.

Figure 1. WWW servers connected to the Internet.2

This paper focuses on the Linux operating system kernel. I will describe its history and

development model to discuss the organization and drivers of innovation in modern global

economy. As the paper is heavily based on one specific software development project, I

will also discuss the possible ways the learnings from this specific case may be generalized.

A subsequent paper will further continue this work by linking the empirical results of this

paper to the theory of innovation, research on product development, and technology

policy.

In much of the innovation literature, innovation is defined as something that has economic

impact. The case of Linux shows that this definition is problematic and possibly misleading

in important practical cases. During its history, most Linux development has occurred

independent of direct economic concerns. It would be tempting to argue that Linux

development is different from “economic activity” and something that, strictly speaking,

2 Source: Netcraft, http://www.netcraft. com/survey/.

 4

should not be called innovation. Indeed, Linux development has not in any obvious way

been associated with changes in production functions, market competition, or

appropriation of economic investment and surplus. This, in itself, makes Linux an

interesting test case for economic theories of innovation and technology development. For

example, the case of Linux allows one to question to what extent existing economic

models of innovation and technological development capture phenomena that underlie

collective production of new technologies.

In very practical terms, Linux is an economically important phenomenon. Indirectly, the

success of many new businesses, venture capitalists, investment funds, and individual

investors critically depends on the productive activities of the Linux community. Yet,

when we consider the entire history of Linux, the economic impact seems to appear almost

as an afterthought and as a side effect of a long period of technology creation, in a way

that seems to break commonly accepted rules of innovation and technology development.

Linux, therefore, provides an interesting history of globally networked innovation,

illustrating the substance that underlies the discussions on the “new economy.”

From a theoretic point of view, Linux is an interesting case as it enables us to discuss

those social and cognitive phenomena that underlie technological change. In that sense, it

enables us to penetrate some black boxes of innovation theory, including such widely used

concepts as learning, capability, utility, and consumption. By observing the development

of Linux, we can describe the microstructure of innovation, and transcend the boundary

between invention and innovation. Linux development is collective productive activity,

and the products of this activity are externalized as technological artifacts and discourses,

which can be observed relatively easily. There exists sufficient documentation on the

history and practices of Linux development so that we can—at least tentatively—describe

some key principles that underlie Linux development.

From a practical point of view, the case of Linux also provides a test case for analyzing

product development models and proposals for organizing for innovation. Specifically, the

extensive use of modern communication and collaboration technologies in Linux

 5

development highlights some aspects of technology development that were not easy to see

in earlier studies on innovation.

This paper is organized as follows. First, I will briefly describe the Linux system and its

developer community in an evolutionary context, highlighting some main characteristics of

the socio-technical change that has led to the current Linux system. I will then discuss the

organization of this technology creation process, focusing on control and coordination

mechanisms. I will describe in some detail the ways the Linux community has managed the

trade-offs between innovation and maintainability of the increasingly complex system, and

discuss how the learnings of effective coordination and control mechanisms have been

embedded in the system architecture.

Linux has attracted considerable attention because it has been argued that the open source

quality control mechanisms are more effective than traditional methods used in software

development. It has often been argued that Linux is more reliable than proprietary systems

because it is developed using the open source principles. I will describe the quality control

system, analyzing in some detail the Linux bug removal process and the complex socio-

technical system that underlies it.

As was noted above, innovation literature sometimes leaves the process of invention into a

black box where undefined psychological forces operate outside the domain of innovation

research. The drivers for innovation are commonly understood to be economic. In this

context, it is interesting to analyze the incentives and drivers of technology development,

as they can be observed in the case of Linux. I will do this, describing the reputation and

attention management processes that underlie Linux. Reputation and attention are shown

to be closely related in the Linux community, and they are the key to resource allocation,

which, in turn, directs technology development.

Open source development is a special form of technology development as it intentionally

reverses some common intellectual property rights. Instead of copyright it uses “copyleft,”

which guarantees the rights of users to modify the results of development, and derive new

works from it. The fact that such a licensing model seems to work and promote

 6

technology development has important consequences for discussions on intellectual

property rights, patent system, and the theory of appropriation of the results of innovation.

The open source licensing policy can be seen as an important social innovation that has

major impact to the way Linux is developed. I will discuss regulations and standards that

underlie Linux development, focusing on the various forms of licensing that have been

used in the open source community.

Finally, I will conclude by drawing together some results from this descriptive and

empirical analysis, putting them into the context of the global dynamics of modern

economy and innovation.

The present case study of Linux development covers a broad set of issues. It is, of course,

impossible to deal with all those issues in the depth they deserve within a single paper. The

goal of this paper is to provide a rich enough description of the case for further

discussions, as well as to open the area for more detailed theoretical and empirical study.

Evolution of Linux and its developer community

Linux development started in 1991 when Linus Torvalds got a new Intel 386 PC and

wanted to learn it. In the beginning, Torvalds didn’t expect that anyone would use Linux.

It was, however, developed to be compatible with widely used Unix tools, and its source

code was made available for anyone who was interested. As a result, people who wanted

to have a Unix-like operating system on their Intel-based PC’s quickly adopted Linux and

started to add new functionality to it (Torvalds, 1999).

Linux was inspired by a small Unix-like operating system Minix, and many early adopters

were familiar with Minix. Minix had been developed by professor Andrew Tanenbaum to

teach operating systems for students who had only the first generation PC’s available.

Whereas Minix was intended to introduce the basic theoretical concepts of operating

system design, Linux was a more pragmatic project. The goal was to develop an operating

system that worked well on Intel 386, and which users were free to modify and play with

(DiBona, Ockman, & Stone, 1999: 221-51). The first version of the system was release

 7

0.01, September 1991. Although it is difficult to find accurate data on the usage of Linux,

today there are probably over 12 million Linux users worldwide.3 Indirectly, almost all

people who are connected to the Internet use Linux, as many Web-servers rely on it.

Linux, and its open source development model, started to attract attention around 1994.

Until that time the Berkeley BSD Unix had been the most visible open source

development activity. It was generally believed that the era of Unix-based operating

systems was over, and that Microsoft had secured its position as the dominant player in

the operating system market. As an indication of this the Berkeley Unix development

group was formally shut down (Raymond, 1999:22-3). The success of Linux became as a

surprise to its developers, but also to people who had been closely observing the evolution

of software and open source projects. In his influential article4, Eric Raymond describes

how Linux made him realize that there exists a new mode in software development:

Linux overturned much of what I thought I knew. I had been preaching the Unix
gospel of small tools, rapid prototyping and evolutionary programming for years.
But I also believed there was a certain critical complexity above which a more
centralized, a priori approach was required. I believed that the most important
software (operating systems and really large tools like Emacs) needed to be built
like cathedrals, carefully crafted by individual wizards or small bands of mages
working in splendid isolation, with no beta to be released before its time.

Linus Torvalds’s style of development—release early and often, delegate
everything you can, be open to the point of promiscuity—came as a surprise. No
quiet, reverent cathedral-building here—rather, the Linux community seemed to
resemble a great babbling bazaar of differing agendas and approaches (aptly
symbolized by the Linux archive sites, who’d take submissions from anyone) out
of which a coherent and stable system could seemingly emerge only by a
succession of miracles.

The fact that this bazaar style seemed to work, and work well, came as a distinct
shock. As I learned my way around, I worked hard not just at individual projects,
but also at trying to understand why the Linux world not only didn’t fly apart in

3 http://www.linux.org/info

4 http://www.tuxedo.org/~esr/writings/cathedral-bazaar/ . The article is also included in Raymond (1999).

 8

confusion but seemed to go from strength to strength at a speed barely imaginable
to cathedral-builders. (Raymond, 1999:29-30)

Linux is a fast growing system. The core Linux—the operating system kernel—consists of

software that controls computer hardware and programs that run on it. When new

interesting hardware becomes available, the operating system kernel is extended for it.

Usually, Linux code for specific hardware components is developed as “drivers.” Linux is

available for several different processor architectures and therefore there also exists

several “ports” of the system.

An operating system can be built based on several different architectures. The architecture

of Linux has been strongly influenced by the Unix operating system. Unix architecture is

implemented as layers, where each layer provides service to the layer above it (Tanenbaum

& Woodhull, 1997). The bottom layer interfaces the software with hardware. A layered

operating system can be represented as in Figure 2. The system kernel usually takes care

of process, memory, file, security, network, and input and output device management.

Utility or system programs are applications that provide key services that are needed for a

functional operating system. In a Unix system, graphical user interfaces, user management,

command shell, file backup, and, for example, directory listing programs are examples of

such system utilities. These programs use the functionality provided by the kernel by

calling system functions through the system call interface. The various end-user

applications, such as word processors, database management systems, and web browsers,

can use both utility programs and system calls to interface with the operating system. The

operating system kernel, in turn, uses the underlying hardware through hardware-specific

drivers that convert operating system calls into low-level hardware programs.

 9

Application
programs

Utility programs

System call interface

Operating system kernel

Hardware

ke
rn

el
sp

ac
e

us
er

sp
ac

e

Figure 2. Layers of a Unix operating system.

An operating system kernel is not a very useful thing in itself. A fully functional operating

system needs system utility programs and applications before it becomes a multipurpose

platform that can support and run end-user applications. In practice, Linux relies on a

large set of other open source programs to form a fully functional operating system. Most

critical of these are the GNU c-language compiler and the GNU c-libraries, which are

required for developing the system. A distinction is often made between the Linux

operating system itself, and the set of open source applications, including the kernel, that

together make a functional environment. The operating system kernel is usually called

Linux and the complete system is called GNU/Linux.

The end-users of Linux mainly deal with large software distributions that comprise

hundreds of applications in addition to the operating system. For example, the Debian

distribution of GNU/Linux has over 1500 open source programs, including word

processors, graphics programs, databases, and web-servers and clients.5 The evolution of

Linux-based systems is therefore only loosely coupled with the evolution of Linux itself.

For example, the functionality of GNU/Linux has grown considerably when major

software providers have recently started to port their systems for Linux.

5 http://www.debian.org

 10

In this paper, I will focus on the development of the Linux operating system kernel.

Already in itself, it provides an interesting example of technology development. Since the

first release of Linux, there has been about one new version of the system released every

week. During this same time, the total size of the kernel code has grown from 236,669

characters in the distribution files to over 78 million characters. In other words, the code

size has grown 333 times.6 The different versions and their relative sizes are shown in

Figure 3. The figure shows sizes for the compressed kernel source code packages. The

actual code size is typically about four times larger.

Kernel distribution size
(compressed)

0

5

10

15

20

25

7-May-90 19-Sep-91 31-Jan-93 15-Jun-94 28-Oct-95 11-Mar-97 24-Jul-98 6-Dec-99 19-Apr-01

M
ill

io
n

s
o

f
b

yt
es

Figure 3. Linux kernel distributions.

From Figure 3 one can note one of the key characteristics of Linux development. The

kernel releases are divided into “stable” and “developmental paths. In practice, the releases

are numbered using a hierarchical numbering system where the first number denotes a

major version, and the second number gives the version tree in question. In the recent

6 For the purposes of this paper, I will measure code size in characters, counting comments and
documentation as parts of the source.

 11

years, the even numbered trees have been stable production releases, and the odd

numbered trees have been “developmental” releases, where new features and functionality

is introduced and tested. For example, in Figure 3 release paths for versions 2.0.x and

2.1.x create two distinctive paths. The paths fork when version 2.1.0 was introduced in

September 1996, and when a new developmental path was started. New releases of the

stable path are released simultaneously with developmental releases, but usually only with

minor bug fixes. Indeed, the last version of the stable path, 2.0.38, was released about

three years after the developmental path 2.1 started. The developmental path 2.1, in turn,

consisted of 132 versions before it became the next stable version 2.2., at the beginning of

1999.

One of the characteristics of open source software projects is that the system design

evolves based on ongoing innovation and learning. One way to illustrate this ongoing

innovation is to analyze the increasing complexity of Linux during its history. The

structural complexity of the system is reflected in the number of relatively independent

subsystems. In practice, the code for each subsystem is organized into its own

subdirectory. An estimate of the number of subsystems can therefore be found by counting

the subdirectories in the kernel distribution. Figure 4 shows the number of new

subdirectories created within two-week time windows, as well as the number of

subdirectories in use across time.7 Major peaks in the number of new directories indicate a

major rewrite of the system. This happens when a new major version is released. On

average, there were 1.6 new directories created each two weeks. In release 2.3.51, March

2000, there were 333 subdirectories in use.

7 The graph was produced by analyzing the file creation dates for 11 kernel releases, including 0.01 and
2.3.51, and defining the directory creation date as the date the first file in the directory was created. A
moving 14 -day time window was used, starting from the first file creation date found. The total number
of files was about 20,000. The analysis was done using a set of Perl programs that processed the file lists
of the various releases and counted the number of new directories within each time window. This rather
labor-intensive process was used as some of the directories in the kernel archives had been recreated
during the years, and therefore had lost their original creation dates.

 12

0

5

10

15

20

25

30

35

Ju
n-

91

M
ar

-9
2

Aug
-9

2

Feb
-9

3

Ju
l-9

3

Ja
n-

94

Ju
n-

94

Dec
-9

4

M
ay

-9
5

Nov
-9

5

M
ay

-9
6

Oct-
96

Apr
-9

7

Sep
-9

7

M
ar

-9
8

Aug
-9

8

Feb
-9

9

Ju
l-9

9

Ja
n-

00

0

50

100

150

200

250

300

350

new directories

total directories in use

Figure 4. New source code directories.

Using a similar measure, it is also possible to estimate the intensity of “creative

destruction” in Linux development. On a structural level, this can be viewed as the number

of system components that become obsolete within a given time window. Using the

directory structure as a proxy for this, we can count the number of directories that

disappear within a given time window. This is shown in Figure 5.

 13

0

1

2

3

4

5

Sep
-9

1

M
ar

-9
2

Sep
-9

2

M
ar

-9
3

Sep
-9

3

M
ar

-9
4

Sep
-9

4

M
ar

-9
5

Sep
-9

5

M
ar

-9
6

Sep
-9

6

M
ar

-9
7

Sep
-9

7

M
ar

-9
8

Sep
-9

8

M
ar

-9
9

Sep
-9

9

M
ar

-0
0

0
5
10
15
20
25
30
35
40
45
50

removed directories

cumulative

Figure 5. Removed directories as a function of time.

Already from the brief outline given above, it is easy to see that the Linux development

model has led to continuing system development. Even within the kernel itself, the rate of

technology creation seems to increase as the development proceeds. Although the system

has gone through a large number of revisions, the rate of growth does not seem to slow

down.

Linux developer community

Constant innovation creates major challenges for developing a coherent and maintainable

system. When a number of people actively develop the same system, and thousands of

end-users can freely report bugs they find and express their ideas for new functionality,

there is an ongoing flow of suggestions for improvement. This easily leads to an

increasingly complex system that becomes extremely difficult to understand and maintain.

In the Linux development community, this phenomenon is known as “creeping featurism,”

and it is one of the main concerns of the developers. Yet, it is also important that new

innovations are incorporated into new releases without excessive delay. Without the

possibility of new contributions to be integrated into the system, there would be little point

in proposing and producing improvements. In practice, this inherent tension between the

 14

need to incorporate new innovations and keep the system complexity manageable is a

critical issue for open source development. A successful resolution of this issue requires

effective social coordination and control. The resulting social structures and processes,

therefore, reflect the requirements of successful system development. To the extent that

Linux is a highly reliable and effective software system, one could then expect that its

developer community implements effective social structures for technology development.

Since version 1.0, March 1994, Linux kernel files have included a “credits” file that lists

important contributors to the project. The most recent credits file for Linux contains the

names of 328 developers.8 This is a good estimate of the number of people who have

substantially and successfully contributed to the development of the core Linux system.

The actual number of co-developers is, however, much higher. There are about 90,000

users who have registered themselves as Linux users9, and a large proportion of these have

programmed at least minor applications for Linux. These active developers are an

important source of bug reports and bug fixes. Often the credit of such contributions is

given only in the change logs and in source code comments. The “bazaar” described by

Raymond, therefore, seems to consist of several hundreds of central members, and several

thousands of more peripheral, but technically sophisticated users.

One important aspect of this “bazaar” is that it relies heavily on Internet to get its work

done. The Linux development model emerged simultaneously with the explosion of

Internet use. In early 1992, it was still argued that the development model relied too much

on Internet, therefore excluding people without Internet access (Tanenbaum, quoted in

DiBona, Ockman, & Stone, 1999:245). However, the rapid expansion of Internet use at

the time when the Linux kernel was developed provided the developer community with

new ways to distribute development work, a new distribution channel, and a global

community of sophisticated users.

8 ftp://ftp.funet.fi/pub/Linux/kernel; the CREDITS file can be found in the root directory of each release

9 http://www.linux.org/info/index.html

 15

The regional distribution of early Linux development work is depicted in Figure 6. The

figure shows the number of people in different countries mentioned in the first credits file.

To adjust for the different sizes of countries, the numbers in Figure 6 are given per million

inhabitants. The figure shows that Linux development has been a geographically broadly

distributed activity since the very beginning.

People in the first credits file

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Aus
tra

lia

Belg
ium

Can
ad

a

Den
m

ar
k

Finl
an

d

Fra
nc

e

Ger
m

an
y

Net
he

rla
nd

s

Spa
in

Swed
en UK

USA

p
er

 m
ill

io
n

 in
h

ab
it

an
ts

Figure 6. Location of active contributors, March 1994.

The first credits file acknowledged 78 contributors coming from 12 different countries. In

addition there were two contributors whose location was not possible to identify using the

information in the file. The credits file for 2.3.51 release, March 2000, had contributors

from 31 different identifiable countries. In absolute numbers, the U.S.A. was the biggest

home base for contributors with 114 people. Figure 7 shows the current geographic

distribution of people in the credits file. Luxembourg had one developer in the most recent

credits file, but as the country has less than half a million inhabitants, it is omitted from

Figure 7.

 16

People in the credits file

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Arg
en

tin
a

Aus
tra

lia

Aus
tri

a

Belg
ium

Bra
zil

Can
ad

a

Cro
at

ia

Cze
ch

 R
ep

ub
lic

Den
m

ar
k

Finl
an

d

Fra
nc

e

Ger
m

an
y

Hon
g K

on
g

Hun
ga

ry

Ire
lan

d
Ita

ly

Ja
pa

n

M
ex

ico

Net
he

rla
nd

s

Nor
way

Pola
nd

Rep
ub

lic
 of

 C
hin

a

Rom
an

ia

Rus
sia

Spa
in

Swed
en

Switz
er

lan
d

UK

Ukr
ain

e
USA

p
er

 m
ill

io
n

 in
h

ab
it

an
ts

13-Mar-94

11-May-99

11-Mar-00

Figure 7. Geographical expansion of development activity.

Linux is in many ways a self-organizing effort. There is no formal organization, although

several non-profit and business organizations have become important components of the

Linux development effort during the recent years. The Linux development effort is in

practice organized around projects, communication procedures, communication and

collaboration tools, and software modules that are constantly evolving. In many ways, the

Linux development community resembles a community of practice (Lave & Wenger,

1991; Brown & Duguid, 1991). Such a community is organized around central “gurus,”

“old-timers,” and more peripheral novices who have been accepted as legitimate members

of the community. In the case of Linux, the core community members consist of key

contributors to the overall project. In contrast to the basic community of practice model,

however, Linux development community has more than one center, as there are several

important sub-projects. In recent years, the different main subsystems have been managed

by a self-nominated group of maintainers. As a default, Linus Torvalds acts as the

maintainer for those subsystems that have no explicitly defined maintainer.

 17

Although Linux development is not formally organized, a key to the success of Linux is

that the development is not random, however. The development of technology is based on

a sophisticated system of social relations, values, expectations, and procedures. This

system is in many ways quite different from conventional industrial product creation.

Control and coordination in the Linux community

Traditionally, organization theorists have argued that increasing complexity in division of

labor leads to formal organizational structures (e.g., Mintzberg, 1979). In the case of

Linux, this doesn’t seem to be the case. Although the Linux community has some

structural similarity with the cellular organizational form (Miles, Snow, et al., 1997) and

the hypertext organization (Nonaka & Takeuchi, 1995), existing organizational models do

not very well describe the structure of Linux community. Instead, the Linux developer

community resembles a dynamic meritocracy, where authority and control are tightly

bound with the produced technological artifacts. In this sense it also differs from most

network-based organizational and innovation models, which typically have focused on firm

and industry level networks (e.g., Powell, Koput, & Smith-Doerr, 1996; Van de Ven,

1993; Lynn, Aram, & Reddy, 1997). Indeed, the organizational structure could be

characterized as a network of communities of practice, or as a fractal organization

(Tuomi, 1999).

Peripheral additions to the GNU/Linux system are not controlled by anyone. For example,

anyone can develop a new application that uses the Linux kernel, and distribute it. As a

result, there exists a large set of potential sub-projects competing for community

development resources. As will be discussed below in more detail, the allocation of these

resources is to a large extent based on management of community attention, which in turn

relies on accumulation of reputation. Sometimes it is possible to develop a simple program

for one’s own use, but in most cases interesting systems require that several developers

become interested in developing and using them. Control, therefore, is indirectly based on

capability to mobilize resources. Directly, it lies very much with the users and potential co-

developers.

 18

As there is no formal organization in the Linux community, its coordination and control

mechanisms can only be analyzed by observing those explicit and implicit procedures that

the community relies on. In the Linux development community, social issues are often

described as technical issues. When Linux developers discuss the way the system should

be developed and how it should evolve, discussions often focus on code portability,

maintainability, possible forking of code-base, programming interfaces, and code size and

performance. These technical discussions are critical for the success of the collaborative

effort.

Implicitly, each technical choice implies specific procedures that need to be followed in the

development work. Often the technical decisions are driven by the need to keep the

collaborative development work going. Computer software is inherently flexible, and there

is a very large set of possible ways to implement a specific system. Technical decisions,

therefore, are to a large extent articulations of beliefs on the effective ways to organize

development. In the course of the evolution of the system architecture, the learnings on

problems and possibilities of collaborative development become implemented in the

architecture of the technological artifact. Technical discussions on how things “work,”

what a good design is, and how development should be done are therefore often

reflections on social practices, externalized as specifications for technology. This is most

obvious when developers discuss the maintainability of the code, “cleanness” of the

interfaces, and the problem of “creeping featurism.”

A contingency theoretic view would imply that in a successful development project, such

as Linux, the structure of software becomes a mirror image of important aspects of the

social structure that is needed for a successful system to emerge. Although social

institutions are not directly mapped to the development architecture, of course, the

architecture and ways of doing things have to be complementary for a project to be

successful. For example, the control of specific software modules, coordination

mechanisms, incentives, and goals have to be aligned for the overall effort to be

successful. These, in turn, have to be embedded within a larger social context, which limits

the arrangements within the Linux community.

 19

The lack of formal organizational structure in Linux development has enabled flexible

experimentation with the procedures and values that support effective development. As

Linux development occurs in “internet time,” the speed of evolution is fast. The resulting

social innovations, therefore, crystallize some of the learnings in organizing collaborative

and geographically distributed technology development.

Collaborative software development projects have inherent problems that create specific

forms of division of labor, and related design traditions. A sociological description might

view the emergent social structures in the Linux development community as solutions to

underlying social tensions. Blumenberg 1985, for example, argued that social institutions

grow around irreducible social contradictions and fundamental conflicts, somewhat as a

pearl grows around an irritating grain of sand. A fundamental problem in the development

of complex software is that small modifications in one part of code can have major

implications for another part of the code. There is no natural decay in software, and

therefore no universal dimension of distance or time. As Wiener (1975) noted long time

ago, digital computers are unique among computational systems because digitalization

makes computational machines noiseless, in the information processing sense. Modularity

and “locality,” therefore, have to be created and maintained through social processes.

In practice, interdependencies in pieces of parallely developed code create a need to

coordinate design decisions. Often there are conflicting interests. For example, a minor

modification in some part of the program code may require major rework from people

who maintain other parts of the program. A generic way to reduce this problem is source

code modularization. A well-designed program has modules whose design limits

interactions between modules. If modularization is successful, one programmer can modify

the source code of his or her module without requiring changes in other modules. In other

words, a programmer can control the evolution of a specific piece of code, without

creating problems for other programmers.

In the case of Linux, modularization is based on social agreements, which are supported

by commonly accepted development practices, and which are reflected in the overall

 20

system design. Many of these social agreements are implicit, and community members

have to learn them through socialization. Indeed, only after a novice programmer is able to

display the mastery of the key rules, he or she is considered to be a full member of the

community. To some extent these rules are also dynamic and they can change.

Sometimes conflicts arise about the implementation and functionality of a specific program

module. If two programmers create different versions of the module, and the module is a

key component of the system, this leads to forking of the code base. In effect, the system

evolves into two different and incompatible variations. This means, in practice, that the

synergy in development is lost, and the developers have to choose one of the versions as

the basis for their future work. According to Torvalds, such code forking occurred in the

first attempt to port Linux to a non-Intel processor architecture. As a result, the kernel

design was modified to accommodate new processor architectures in a way that did not

risk forks in the code base (Torvalds, 1999:102).

The design choices for modularization and interfaces are critical success factors in

collaborative software development. It is possible to define modules so that development

becomes extremely difficult. For example, if there is no simple mapping between the

underlying hardware and the software, the implementation of new functionality may

require changes in several modules. Similarly, a small modification in the user interface

may require extensive reprogramming if the modularization is bad. The layered abstract

architecture of Unix is one attempt to solve this problem. In practice, this leads to major

challenges in finding the appropriate levels of system abstraction, which are then reflected

in the structure of source code. The situation is made worse by the fact that programmers

often want to by-pass some levels of the abstract system architecture, usually to improve

performance. Often it means that abstract representations of the system only remotely

resemble its concrete implementation.

For example, Linux modules that support different networks should in theory be

independent modules. In practice, there have been many interdependencies between the

modules for different networks. Armstrong (1998) has used automatic architecture

 21

extraction tools to analyze Linux, and noted that these interdependencies create a potential

maintenance problem for the kernel.

Although GNU/Linux development is open and has very little formal control, kernel

development is socially very tightly controlled. It is in the very core of the Linux kernel,

therefore, where the link between social and technical structures can most clearly be seen.

Controlling the kernel

The constant flow of improvements means that the Linux system is in a constant risk of

losing its maintainability. In practice, balancing innovation and maintainability has led to

tight control of some parts of the system. The control structures are very dynamic and

continually reproduced in the ongoing communication within the developer community.

As Linus Torvalds notes in one recent email:10

If anybody thinks that being the maintainer equals being in 100% control, then I

don't think they have understood the TRUE meaning of Open Source. Open

source is about letting go of complete control. Accept the fact that other people

are wonderful resources to fixing problems, and let them help you.

To study the interplay between control and technology design, we need to describe the

architecture of the Linux kernel. As was noted before, a GNU/Linux distribution consists

of a large set of application programs, the basic Unix utility programs, several versions of

the kernel for the different supported processor architectures, and a large number of

drivers for different types of hardware. In practice, the abstract high-level system

architecture shown in Figure 2 is therefore relatively close to the actual Linux

implementation. On a more detailed level, abstract descriptions, however, start to deviate

from the concrete implementation. The kernel, for example, does not have a well-defined

boundary between the system call interface and the core kernel. This is partly because

10 Summarized from email traffic in linux-kernel mailing list in Kernel Traffic #60, 27 Mar, 2000,
http://kt.linuxcare.com/

 22

there are performance trade-offs, which sometimes make it practical to bypass some

internal parts of the kernel. Partly it is simply because the evolution of Linux has led to

interactions between the different parts of the system, and, as a consequence, the

boundaries have become blurred. Also, in Linux the module called “kernel,” which

architecturally most closely resembles the system call interface, implements some process

management and memory management functions, as well as some error processing. The

main components of the Linux kernel architecture can be represented as in Figure 8.

kernel
(system call interface)

lib
(system call interface)

mem
(memory management)

arch
(processor architecture

dependent)

ipc
(inter-process

communication)

fs
(file system)

net

drivers
(hardware drivers)

Figure 8. Linux architecture (modified from Armstrong (1998)).

The need to control the kernel was one of the topics in the famous debate between

Andrew Tanenbaum and Linus Torvalds in 1992. Tanenbaum argued that it is critical for a

successful operating system project that someone maintains tight control of the code, so

that its complexity does not explode and that the core of the system does not fork:

If Linus wants to keep control of the official version, and a group of eager beavers
want to go off in a different direction, the same problem arises. I don’t think the
copyright issue is really the problem. The problem is co-ordinating things. Projects

 23

like GNU, MINIX, or LINUX only hold together if one person is in charge.
During the 1970s, when structured programming was introduced, Harlan Mills
pointed out that the programming team should be organized like a surgical team—
one surgeon and his or her assistants, not like a hog butchering team—give
everybody an axe and let them chop away. Anyone who says you can have a lot of
widely dispersed people hack away on a complicated piece of code and avoid total
anarchy has never managed a software project. (quoted in DiBona, Ockman, &
Stone, 1999:247)

At that time, Linus emphatically argued that he would not control the system:

This is the second time I’ve seen this “accusation” from ast (Andrew
Tanenbaum)…Just so that nobody takes his guess for the full truth, here’s my
standing on “keeping control”, in 2 words (three?):

I won’t.

The only control I’ve effectively been keeping on linux is that I know it better than
anybody else, and I’ve made changes available to ftp-sites etc. Those have become
effectively official releases, and I don’t expect this to change for some time: not
because I feel I have some moral right to do it, but because I haven’t heard too
many complaints, and it will be a couple of months before I expect to find people
who have the same “feel” for what happens in the kernel. (quoted in DiBona,
Ockman, & Stone, 1999:247)

Almost seven years later, at the end of 1998, Torvalds argued that the development had

undergone major improvement when a new model for the kernel development was taken

into use with release 2.0. In the new kernel architecture, the original monolithic kernel was

extended by introducing loadable kernel modules. These are mainly used to dynamically

load device drivers according to the needs of the specific computer configuration.

According to Torvalds, this improved modularity by creating a well-defined structure for

writing modules:

Programmers could work on different modules without risk of interference. I could
keep control over what was written into the kernel proper. So once again
managing people and managing code led to the same design decision. (Torvalds,
1999:108)

An indirect implication of loadable kernel modules is that performance critical hardware-

specific code can often be confined to a module. As a result, the core kernel becomes

easily portable. For example, low-level interaction with hardware devices can be

 24

programmed in separate device drivers that can be loaded if the specific device is present.

Such device specific functionality, therefore, does not need to be implemented in the core

kernel itself. The question, however, is not only about technical performance. As Torvalds

notes:

But Linux’s approach to portability has been good for the developer community
surrounding Linux as well. The decisions that motivate portability also enable a
large group to work simultaneously on part of Linux without the kernel getting
beyond my control. The architecture generalizations on which Linux is based give
me a frame of reference to check kernel changes against, and provide enough
abstraction that I don’t have to keep completely separate forks of the code for
separate architectures. So even though a large number of people work on Linux,
the core kernel remains something I can keep track of. And the kernel modules
provide an obvious way for programmers to work independently on parts of the
system that really should be independent. (Torvalds, 1999:109-10)

Control and innovation

Comparing Torvalds’ early and later statements on controlling the system it is clear that

both the challenges and the possibilities of the system have considerably evolved in a few

years. In 1992, when there were only few people developing the system, there was no

obvious need to restrict derivative works. Although Tanenbaum warned Linux developers

about the problems of uncontrolled forking, at this time the developers were more

interested in the possibility to easily modify and improve the system. Indeed, the system

was perceived as a huge technical opportunity and there were no visible constraints that

restricted its future evolution. In other words, it was seen as a platform that could easily

adjust to the best technical ideas anyone could come up with. Due to its simple structure,

open source, and constant improvements, it was able to effectively grab attention among

programmers who wanted to show their capability, and who enjoyed the possibility of

creating code that contributed to the collective effort.

When the system has become more complex and there have been more active developers,

the problem has increasingly been in balancing coordination, control, and local innovation.

The key factors in this process seem to be modularization and implicit management of

attention. Attention is allocated to a large extent based on centrality in the community, and

 25

this, in turn, is based on reputation. Reputation within the community is, in turn, to a large

extent based on producing working code that has relevance for the community, or solving

important problems with existing code.

Under these circumstances, reputation is a good predictor for future achievements. If

someone has successfully coded Linux, he or she most probably knows many things about

programming. A distributed system of social control seems to work effectively in this case,

and the technical artifact and its developer community evolve in compatible ways.

Although the skill-base and tools change, the open and collaborative environment makes it

relatively easy to learn new techniques and renew competences. As a result, meritocracy

has definite merit in Linux development. Innovation, however, is also closely related to the

modularity and extensibility of the underlying technical system. The market of resource

mobilization is possible in the Linux community only because the kernel architecture

provides a relatively stable focal point around which dynamic sub-communities can

emerge.

Using the directory structure of the Linux kernel, it is possible to illustrate the evolution of

the various kernel components. Such an analysis reveals that the growth in the system is

quite heterogeneous. Innovation and development are strongly concentrated on some parts

of the system, whereas other parts rarely change. The core kernel may be defined as those

parts of the system that have stabilized. Figure 9 shows the evolution of some components

of the core kernel. A typical pattern is that a period of relatively rapid change is followed

by stabilization and lock-in.

 26

-3

-2

-1

0

1

2

3

4

7-May-90 19-Sep-91 31-Jan-93 15-Jun-94 28-Oct-95 11-Mar-97 24-Jul-98 6-Dec-99 19-Apr-01

C
o

d
e

si
ze

 c
h

an
g

e
(k

ch
ar

 p
er

 d
ay

)

boot

init

ipc

kernel

lib

mm

Figure 9. Growth of some core kernel components.

In most cases, changes in the core kernel would require extensive rewriting of other parts

of the system that depend on given functionality in the core. Therefore such changes can

happen only in limited ways. In practice, after there exists a substantial amount of code

that depends on the core kernel, the core can only change its internal implementation or

provide new functionality that is compatible with the old. Technically, it is not possible to

constrain changes in such a way. In other words, the open source development model

needs strong social controls to avoid the costs of lock-in. As Torvalds notes:

The first very basic rule is to avoid interfaces. If someone wants to add something

that involves a new system interface you need to be exceptionally careful. Once

you give an interface to users they will start coding to it and once somebody starts

coding to it you are stuck with it. (Torvalds, 1999:105)

The internal implementation changes in the core kernel when bugs are corrected or when

inefficient code is rewritten. New functionality, in turn, is introduced only when there are

 27

extremely important reasons for it. The conservative policy for the extensions originates

from the fear that the core kernel becomes difficult to maintain, or that new bugs are

introduced into the core. By keeping the core kernel simple and stable, and by providing

support for extensions in the kernel architecture, technical change can be directed to areas

where it can be managed. The fundamental trade-off is, of course, that radical innovation

in the core kernel becomes difficult, or impossible in practice. The interactions between

software modules make the system evolution extremely path-dependent, and tight control

of some parts of the system are required to keep other parts of the system open and

extensible.

As expected, in contrast to components shown in Figure 9, some other parts of the kernel

grow very fast. Linux was originally developed for Intel 386 processor architecture, but

since version 1.2.0 it has supported several alternative processor architectures. Linux can

be extended to a new processor by porting its processor-dependent parts. The code for

these different processor-dependent parts is organized into their own directories. Using

such a modularization of source code, the code for different architectures becomes

independent, and it is possible to add support for new processor architectures without

interfering with other parts of the source code. In practice, this has led to a situation

where several different teams of programmers have been able to develop the overall

system in parallel.

Similarly, the hardware specific drivers can be developed as independent modules. Indeed,

most of Linux development in recent years has been related to new hardware components.

The open source policy makes it easy for anyone to develop hardware-specific additions to

the system, as long as the developer knows the internals of the hardware in question.

Linux architecture is extensible also in areas that one would expect to be parts of the core

kernel. For example, Linux supports a large selection of file systems. As long as existing

file systems continue to work, it is possible to introduce a new file system without much

risk of destroying system reliability. As Torvalds notes:

 28

Without modularity I would have to check every file that changed, which would be

a lot, to make sure nothing was changed that would effect anything else. With

modularity, when someone sends me patches to do a new filesystem and I don’t

necessarily trust the patches per se, I can still trust the fact that if nobody’s using

this filesystem, it’s not going to impact anything else. (Torvalds, 1999:108)

As a result, the evolution of Linux is very much concentrated on those parts of the system

that can be developed independently. This can be seen by analyzing the rate of change in

the source code size. The main extensible components of the kernel distribution are shown

in Figure 10. Comparing the rates of change for core and extensible components of the

kernel, one can see that the extensible components grow typically about two orders of

magnitude faster than the core components.

-10

0

10

20

30

40

50

60

7-May-90 19-Sep-
91

31-Jan-
93

15-Jun-
94

28-Oct-
95

11-Mar-
97

24-Jul-98 6-Dec-99 19-Apr-
01

C
o

d
e

si
ze

 c
h

an
g

e
(k

ch
ar

 p
er

 d
ay

)

Documentation

arch

drivers

fs

net

Figure 10. Growth of architecture dependent and extensible components.

 29

Quality control and Linus’s Law

An important characteristic of the Linux community is the way it controls the quality of its

production. This, indeed, is the key when we try to understand how a distributed group of

self-managing developers are able to create a useful product. Product quality is a critical

success factor for an operating system project, and it is exactly here where the Linux

development model shows its strength.

Almost all software has bugs, and in complex systems these bugs can emerge as a result of

complex interactions between different program components. Large software systems are

therefore difficult to develop. The more developers there are, the more difficult it becomes

to control and understand all the possible interactions between software components. This

is usually known as “Brooks’ Law.” In “The Mythical Man-Month”, Fred Brooks (1995)

noted that adding programmers to a late software project makes it later. He argued that

the complexity and communication costs of a project rise with the square of the number of

developers, while work done only rises linearly. Raymond, however, observes that if

Brooks’ Law were the whole picture, Linux would be impossible:

Gerald Weinberg’s classic “The Psychology Of Computer Programming” supplied
what, in hindsight, we can see as a vital correction to Brooks. In his discussion of
“egoless programming”, Weinberg observed that in shops where developers are
not territorial about their code, and encourage other people to look for bugs and
potential improvements in it, improvement happens dramatically faster than
elsewhere.

Weinberg’s choice of terminology has perhaps prevented his analysis from gaining
the acceptance it deserved—one has to smile at the thought of describing Internet
hackers as “egoless”. But I think his argument looks more compelling today than
ever. (Raymond, 1999:61-2)

Quality control is quite a different process in the Linux developer community than it is in

traditional product development. Openness means that members of the developer

community are able to review the work of others’. An interesting effect of this is that

quality control of the results is good. Whereas traditional software development models

mainly used end-users are a source of reclamations and bug-reports, in the Linux model

users become problem solvers, providing an enlarged set of problem solving resources.

 30

The user-developers bring many different perspectives, approaches, and experiences into

play. From some of these perspectives, a specific problem is easier than from others. When

the developer population is large enough, there probably is someone to whom the problem

is easy. Raymond formulates this principle as “Linus’s Law”:

Given a large enough beta-tester and co-developer base, almost every problem

will be characterized quickly and the fix is obvious to someone.

Or, less formally, “Given enough eyeballs, all bugs are shallow.” (Raymond,
1999:41)

Raymond argues that this is the main difference underlying the cathedral-building and

bazaar styles. Whereas development problems are tricky, insidious, and deep phenomena

in the cathedral model, in the bazaar model one can assume that “they turn shallow pretty

quick when exposed to a thousand eager co-developers pounding on every single new

release.”

And that’s it. That's enough. If ”Linus’s Law” is false, then any system as complex
as the Linux kernel, being hacked over by as many hands as the Linux kernel,
should at some point have collapsed under the weight of unforeseen bad
interactions and undiscovered “deep” bugs. If it’s true, on the other hand, it is
sufficient to explain Linux’s relative lack of bugginess and its continuous uptimes
spanning months or even years. (Raymond, 1999:42)

Raymond’s formulation of Linus’s Law therefore complements Von Hippel’s (1988)

argument that users are important sources of product innovation. Indeed, Linus’s Law

shows that there are two essentially different reasons why users are important for

innovation. As Von Hippel noted, users can modify and adapt innovations, and thereby

add value to them. As Raymond notes, however, users can also play an important role in

quality control.

This second role is not a trivial one. Indeed, it is a very fundamental phenomenon which

has major implications for the theory of innovations also more generally. Users

appropriate innovations in idiosyncratic contexts. These contexts differ both cognitively

and situationally. When source code is available, software bugs can be characterized and

debugged using these multiple perspectives, each of which rests on large stocks of

 31

unarticulated knowing. In open source environment, therefore, software bugs can become

opportunities for innovative contribution, and not just sources of frustration.

In Linux development, the situation consists in part of the complex system of hardware

and software that interacts with the operating system. To limit this complexity, developers,

for example, use old and tested compilers to be able to separate compiler bugs from the

kernel bugs. The Linux kernel mailing list FAQ answers the question whether different

compilers can be used to compile the kernel in the following way:

Sure, it’s your kernel. But if it doesn’t work, you get to fix it. Seriously now, there

is really no point in compiling a production kernel with an experimental compiler.

Production kernels should only be compiled with gcc 2.7.2.x, preferably 2.7.2.3.

Newer kernels are known to break the 2.0 series kernels, known symptoms of this

breakage are hwclock and the X server seg.faulting…Regarding 2.1 kernels, they

usually compile fine with other compiler versions, but do NOT complain the list if

you are not using 2.7.2. Linux developers have enough work tracking kernel bugs,

to also be swamped with compiler related bugs.11

Often it is impossible to predict the interactions between different system components, and

the only way to learn about them is to use the system in different concrete settings.

Sometimes the bugs are in the hardware, and there is no way they can be corrected by

studying the software. For example, Intel Pentium processors have bugs that need to be

corrected by workarounds. In some cases, hardware bugs can be so unpredictable that

there is no workaround. The Linux kernel mailing list FAQ lists some of the known

processor bugs and, for example, tells that the AMD K6 processor has unpredictable

hardware errors:

The AMD K6 “sig11” bug, affects only a few K6 revisions. Was diagnosed by

Benoit Poulot-Cazajous. There is no workaround, but you can get your processor

11 http://www.tux.org/lkml/

 32

exchanged by contacting AMD. 2.2.x kernels will detect buggy K6 processors and

report the problem in the kernel boot message. Recently, a new K6 bug has been

reported on the linux-kernel list. Benoit is checking into it.

The importance of testing new software code is strongly emphasized, and “good ideas”

rarely get support without working code that implements the idea. The MAINTAINERS

file12 that lists people responsible for the various kernel modules also gives guidelines for

submitting changes to the kernel:

1. Always test your changes, however small, on at least 4 or 5 people, preferably

many more.

2. Try to release a few ALPHA test versions to the net. Announce them onto the

kernel channel and await results. This is especially important for new device

drivers, because often that’s the only way you will find things like the fact that

version 3 firmware needs a magic fix you didn’t know about, or some clown

changed the chips on a board and not its name. (Don’t laugh! Look at the SMC

etherpower for that.)

3. Make sure your changes compile correctly in multiple configurations. In particular

check that changes work both as a module and built into the kernel.

4. When you are happy with a change make it generally available for testing and

await feedback.

The outline of the bug detection and removal process is straightforward. For a software

bug to be removed from the system, first someone has to realize that there is a bug. After

a bug has been detected, it has to be characterized, preferably by describing repeatable

conditions under which the bug can be observed. This phase consists of diagnosing the

exact nature of the bug. When the bug has been understood, it can be solved. This phase

consists of writing new code that corrects the bug, and testing the new code to verify that

12 MAINTAINERS file can be found from the root directory of new releases of the Linux kernel, for
example, from http://www.kernel.org/pub/linux/kernel/

 33

the bug has been removed, and that no new bugs have been introduced in the process.

When a tested solution is available, it is distributed to other developers. Finally, if the bug

is important enough and the new code does not seem to create excessive problems, the

bug fix is eventually integrated into a new kernel release. This process is depicted in

Figure 11.

test

detect

characterize

remove

distribute

integrate

Figure 11. The basic bug removal cycle.

In actual practice, this rather straightforward process is more complicated. It relies on

tools, social practices, and knowledge resources that implement the abstract bug removal

procedure. Moreover, the developers apply the various resources in a creative way,

improvising according to the needs of the situation. The appropriate way to improvise

depends on the audience: if the community of developers understands that a specific way

of breaking the standard procedure is justified, rules can be broken. The behavioral

standards are usually given as expectations and suggestions, and there are only few

explicit procedures for doing things. Usually such explicit procedures do not result from

explicit specification of social processes; instead, they arise from the design of specific

tools used in the process. In other words, some aspects of the process are hard-wired into

the functionality of the tools.

 34

Some widely used resources and tools for Linux kernel bug management are shown in

Table 1. Some of the resources, such as the JitterBug bug reporting and patch distribution

system, are both platforms for collaboration and informational resources. Some

informational resources are meta-level resources that describe procedures used in bug

processing. An important meta-level resource is, for example, the linux-kernel mailing list

FAQ document that lists frequently asked questions and gives answers and links to further

information on them. Some tools interface the object of development, i.e., source code, to

the development community. An example of such a tool is the CVS version control

system, and the CVS vger –server that maintains the different patches and versions of the

kernel in hierarchical trees, and which provides a shared repository of source code to all

developers. Many of the tools listed in the table are well-known generic and Unix-tools.13

Although their existence is often taken for granted, in practice the bug removal procedures

critically depend on the tools and their evolution.

Although Table 1 shows the main tools currently used in the bug removal process, one

should note that many of these tools have emerged during the evolution of the kernel.

Some of the tools and resources explicitly address problems that the success of the kernel

development has created. For example, the Kernel Traffic list14 produces an edited

summary of the large volume of mailings in the linux-kernel mailing list. The linux-kernel

mailing list FAQ, in turn, documents the common questions that novice developers have,

as a way to keep such relatively low-priority questions crowding the linux-kernel list.

13 man is a program for reading manual pages. gcc is the GNU c-compiler. make is a program that
manages the compilation process. gdb is the GNU debugger. diff is a program that creates difference files
from two source code files, and which updates modified files using differences. This is used to distribute
patches that update files with modifications. gzip is used to compress files, and tar is used to package
several files into one for easier distribution. Linux developers also use generic tools such as IRC, ftp,
email, and mailing lists. Other tools and resources are systems that are more specific to Linux
development. ksymoops maintains a list of symbols used in error messages. Kernel Traffic is an edited
weekly summary of the mailings in the linux-kernel mailing list. LDP is Linux Documentation Project,
which maintains a set of guidelines and documents for Linux developers. JitterBug is system that
maintains information of known bugs and patches. CVS is a version control system that integrates with a
shared CVS server called vger.

14 http://kt.linuxcare.com/

 35

Similarly, the mailings in the linux-kernel list are archived, so that they can be searched

when someone needs to know whether something is known about a potential bug. In that

way the mailing list archives provide a simple but effective form of community memory.

processing phase information resource tool community
resource

detect compiled code
documentation

man LDP

d
e
b
u
g
g
i
n
g

characterize source code
linux-kernel list FAQ
JitterBug
oops-tracing.txt
Kernel Traffic
LDP
project-specific sites
linux-kernel archives
README files
log files
bug reporting form

editor
gcc
make
gdb
ksymoops
IRC
computer configuration

linux-kernel list
JitterBug
personal email
IRC channels
kernel-newsflash
LDP
project-specific lists

 remove source code editor
gcc
make

 test patch
MAINTAINERS file

diff
gcc
make
editor
ftp

personal email
linux-kernel list

distribute patch
MAINTAINERS file

gzip
tar
email
ftp

linux-kernel list
JitterBug

integrate patch
release

CVS
vger
package managers

Maintainers
vger

Table 1. Kernel bug management resources.

Already a superficial analysis of the tools and resources used in the bug removal process

reveals that a complex socio-technical system underlies this apparently simple process.

Quality control in the Linux kernel, therefore, is not only about finding bugs and

correcting them. It is also very much about the complex and continuously evolving system

that makes the detection, characterization, and removing bugs possible in the first place.

 36

Moreover, the bug removal process is operating in a context where source code patches

can be distributed and integrated into new kernel releases.

Tools and resources therefore mediate the relations between developers, developer

community, and the technical object that is developed. The overall bug removal system

can then be represented in a simplified conceptual way as in Figure 12. Whereas Raymond

emphasizes the cognitive capabilities of co-developers, he forgets the role of mediating

technologies. Sociocultural analysis (e.g., Wertsch, 1998; Leont'ev, 1978; Engeström,

1987; Cole, 1996) would highlight the fact that cognition is also very much dependent on

the tools and resources that are available for the developers. Implicitly, the guidelines for

kernel bug removal note this when they insist that new patches need to be tested in

different hardware configurations. Linus’s law could then be augmented by noting that it is

the combination of eyeballs and other resources that makes even the most insidious bugs

shallow.

tools /
resources

tools /
resources

developer

tools /
resources

object

community

Figure 12. Mediated interactions in the bug removal process.

Quality control in innovative and continuously evolving projects is essentially about

learning. Whereas the traditional models of learning in product development focused on

decreasing errors in a given product design, in the case of Linux learning is also creative.

 37

Theoretical models of innovative learning generally claim that learning starts when a

problem arises, and innovative solutions are generated in the process of defining ways to

overcome the practical problem at hand (e.g., Dewey, 1991; Schon, 1963; Engeström,

1987). The Linux development model is compatible with such theories of innovative

learning. In this sense, it is also different from the conventionally used product

development practices (c.f. Griffin, 1997; Mahajan & Wind, 1992), which rarely consider

the microstructure of learning. The Linux model, however, does highlight some

characteristics of successful product development that have been discussed within the

disciplined problem solving literature on product innovation (Brown & Eisenhardt, 1995).

Within this literature, the importance of exploratory learning, non-financial goals,

continuous problem solving, and diversity of problem solving resources have been often

noted.

Developer incentives and resource allocation

Linus’s Law and the compatibility of social and technical structures may explain why

community-based technology development can lead to high quality results. Theoretically,

Linus’s Law means that each contributor can contribute where his or her impact is

greatest. In this sense, the Linux development community implements a market where

cognitive resources are effectively allocated.

The existence of such allocation mechanisms do not, however, explain why the product

emerges. In the case of a software project, some development may occur simply because

debugging, coding, and solving technical problems can be rewarding as such. This, indeed,

is an important driver for development. Developers often describe the joy of hacking as

their primary motive (e.g., Raymond, 1999).

To be able to make relevant contributions to the project, one has to skillfully use tools and

concepts, and do something that no one has ever done before. If one succeeds in creating

a new piece of software that is taken into use in the community, there is clear evidence of

success and a socially validated proof of mastery. Indeed, software projects provide

 38

unlimited opportunities for testing one’s skills and creating new grounds for mastery. In

this sense, one may regard “the joy of hacking” as something highly non-trivial. Instead, it

can be seen as a prototypical driver for technological progress. As Csikszentmihalyi

(1990) has shown, people are most happy when they are performing on the edge of their

competences. Software is special simply because the developers live in a world of their

own creation (Weizenbaum, 1984). In such a world, each new advance and border-

crossing moves the boundaries further, expanding the domain where new achievements

can be realized. In this context, Linux, therefore, is not just a operating system kernel, but

an interesting metaphor of modern technological culture.

Such socio-cognitive explanations are important parts of the whole picture when we try to

understand the drivers of technological change. As such, however, they cannot explain the

fact that a technological system evolves as a coherent system.

Raymond has proposed that the dynamic of Linux development can be understood by

noting that the ownership rights that underlie the development are essentially similar to

those that underlie the Anglo-American land tenure (Raymond, 1999).15 In this Lockean

theory of property rights, ownership can be gained in three different ways. First, in frontier

areas that have never had an owner, one can acquire ownership by homesteading: by

mixing one’s labor with the unowned land, fencing it, and defending one’s title. Second, in

an area where ownership already exists, one can acquire ownership through the transfer of

the title. In theory, at least, such chain of title goes back to the original homesteading.

Third, property that has been abandoned can be claimed by adverse possession. This

happens in a similar way as the original homesteading: one moves in, improves the

property, and defends the title as if homesteading (Raymond, 1999:93). Similarly, in the

space of potential technological developments of the Linux system, developers can gain

ownership rights for specific sub-projects.

15 Raymond discusses the property rights in his article Homesteading the noosphere. This is included in
(Raymond, 1999), and also available at http://www.tuxedo.org/~esr/writings/

 39

These informal ownership rights are important because they make exchange possible.

According to Raymond, the exchanges that underlie the success of Linux, however, are

not conventional economic transactions. Instead, he suggests that the system of social

exchanges can be understood as a gift culture (Raymond, 1999:97). The developers give

the results of their work as gifts to the community, and the mutual exchange of gifts leads

to a technically highly advanced system with a very high quality. By giving gifts, the

developers are also able to build reputation. Good reputation among one’s peers is a

source of reward in itself. Reputation, in turn, makes it easier to mobilize community

resources. In some cases, good reputation within the community may spill over to another

areas the society, and earn a higher status there.

In this sense, the Linux development community is similar to academic disciplines. As

Raymond notes, one peculiarity of such communities is that only the members of the

community can appreciate the quality of gifts. Indeed, the value of a gift is what others can

make out of it.

There is, however, more than one way to run a gift culture. According to Raymond, two

sides of gift culture are represented within the software development community by

crackers, who try to gain reputation by breaking computer security, and by benevolent

hackers, who gain reputation by sharing useful software in source code (Raymond,

1999:100). The cracker culture is a tightly closed one, and protects its secrets, whereas

the hacker culture is based on transparency and openness. This has obvious implications

for the way competence, knowledge, and technological artifacts develop. Openness means

that results and techniques can accumulate, as it is relatively easy to learn from others’

work and add on it. There is a very strong expectation within the community that

developers should develop their systems in ways that make is possible and easy for others

to improve on them (e.g., DiBona, Ockman, & Stone, 1999:221-51). This expectation is

reflected, for example, in the Open Source Definition16, which forbids deliberately

16 http://www.opensource.org/osd.html

 40

obfuscating source code, and which requires that source code be distributed in a format

that a typical programmer would use to modify the program.

Raymond argues that Linux development works well because reputation is mainly

associated with software modules. Although, according to Raymond, developers are

driven by ego-satisfaction there are strong taboos on claiming personal credit. Reputation

is made objective by associating it with the produced technical artifacts. Although hackers

relatively freely flame each other over ideological and personal differences, it is rare that

they would publicly attack someone else’s technical competences. Instead of criticizing

each other, they criticize the software.

Bug-hunting and criticism is always project-labeled, not person-labeled.
Furthermore, past bugs are not automatically held against a developer; the fact that
a bug has been fixed is generally considered more important that the fact that one
used to be there. (Raymond, 1999:110)

Raymond also notes that the hacker culture consciously distrusts and despises egotism:

…self-promotion tends to be mercilessly criticized, even when the community
might appear to have something to gain from it. So much so, in fact, that the
culture’s ‘big men’ and tribal elders are required to talk softly and humorously
depreciate themselves at every turn in order to maintain their status. (Raymond,
1999:107)

In Raymond’s terms, reputation is very much “project-based.” His interpretation is that

most hackers, as members of the cultural matrix, learn that desiring ego satisfaction is bad.

However, he also notes that the rejection of self-interest in the hacker community is so

intense that it probably plays some other valuable function.

Raymond proposes two explanations for the taboos on posturing and personal attacks on

technical competences. First, when results are judged by their merit, the community

competence base increases rapidly. The taboo against ego-driven posturing therefore

increases productivity. More importantly, however, when personal status is discounted,

the community information on system quality closely reflects the quality of the system, and

does not become polluted by personal reputations of the developers.

 41

Implicitly Raymond’s account on the reputation mechanisms, however, assumes that there

are two systems of reputation operating at the same time. The other one drives the

developers as seekers of ego-satisfaction, whereas the other describes the quality of the

collectively produced artifact.

As in any social system, reputation, authority, and legitimation are products of history, and

all abstract definitions of them fail in a closer study. Reputation is defined within the

community in question, and the criteria it uses in managing reputation change as the

community evolves. The only way to learn the rules of reputation building is to become

engaged in the community discourse. Breaking the rules, in turn, can lead to

excommunication.

A recent email exchange in the linux-kernel mailing list gives an example of this process.

The weekly Kernel Traffic linux-kernel mailing list summary called this episode “Tulip

driver developer flame war.” There were 71 mailings around the topic between 13-20

March, 2000. The main issue was the style of development by Donald Becker, one of the

people mentioned in the credits file. The Kernel Traffic editors summarized some of the

discussion:17

In the course of argument, Donald Becker said to Jeff Garzik, "you didn't

understand the task you were taking on when you decided to take over maintaining

the Ethernet drivers. It took years to write the driver set -- it's something you can

just pick up in a few months. And expecting me to now fix or maintain your

hacked up code branch is just completely unreasonable." Jeff replied with venom:

No one expects anything from you and has not for a long time. If you
wanted to actually WORK on the drivers, rather than just complain, then
I'm sure many people including myself would find that work very valuable.
…

17 This is an abridged version of the summary in Kernel Traffic #60, 27 Mar, 2000,
http://kt.linuxcare.com/

 42

Elsewhere, Jeff went on, "Donald, I, and others all seem to agree that having his

drivers and the kernel drivers diverge is a poor situation. However, while Donald

continues closed source development with periodic code drops, and does not work

with other kernel developers when creating infrastructure, I do not see a resolution

to the situation any time soon." David Ford replied angrily, "Please explain how his

code development is closed source? This is totally BS and you know it. All the

code is available, all the list discussion is available, and patches and requests are

accepted all the time. Quit it. His development is quite open …" Linus Torvalds

replied:

David, pipe down.

You seem to like the approach Donald has taken. But take it from me, it
DOES NOT WORK.

The problem is that maintaining the drivers in their own small universe
means that only those people who follow the driver development will ever
even test them. …

I fixed the tulip driver at least twice to work with the media detection, and
sent Donald email about what I had done and why … I don't know if my
fixes ever actually made it into Donald’s version, because after the second
time I just stopped bothering trying to re-fix the same thing, and I never
updated his driver again.

In contrast, what Jeff and others have done have been of the type where
immediately when a fix is made, it is released. Which means that if there are
problems with it, people who follow new kernel releases will know.
Immediately. Not in a few months time when the next "driver release"
happens.

This is what Jeff means with "closed source". Yes, the sources are there.
Yes, they get released every once in a while. But Donald doesn't let people
participate. He thinks he is the only one who should actually touch the
driver, and then he gets very upset when things change and others fix up
"his" drivers to take into account the fact that the interfaces changed. …

Jeff also replied to David:

 43

Donald's development is not open AT ALL. … He disappears for many
months, creates a design without interfacing with kernel developers, and
then appears again with a code drop.

It is classic cathedral style of development. Read Eric Raymond's paper on
why the bazaar method is far, far superior. …

Donald replied to Jeff:

A quick search of the two very active Tulip mailing lists reveals that you
have contributed nothing until this year. Apparently you were not even a
subscriber until then, and know nothing about the very open way
development has been done. Yet you willing throw around pejorative
phrases like "cathedral style" -- a hot button in this community.

For those not interested what superficially appears to be a kernel power
grab, there are issues underlying all of what appears to be a personal
conflict.

The Kernel Traffic summarized in more detail Donald’s arguement that the underlying

questions are about the stability of kernel source code interfaces, testing the drivers in the

context of continuously changing kernel releases, and the large and frequent kernel

patches that make life difficult for driver developers. Donald further stated that the earlier

interfaces were better than the more recent ones, and questioned the viability of the

monolithic, single-point kernel source tree. Linus Torvalds replied:

You're basically the only one thinking so.

The fairly recent changes in 2.3.x (the so-called "softnet" changes) are just
incredibly more readable and robust than the old crap was that I don't see
your point at ALL.

Just about every single network driver out there was SERIOUSLY broken
… I know, I had fixed many of them. The games the drives played …were
just incredibly baroque, and had absolutely NOTHING to do with "clean".

All of that crap is gone, and it was much overdue. …

The Kernel Traffic summary further recorded that Donald was not any more considered to
be the owner of the network drivers that he had earlier developed. First Donald lamented
on the difficult situation he is because he doesn’t have sufficient control over the
development. Then Linus gave his assessment of the situation. The Kernel Traffic
summarized:

 44

Elsewhere in an entirely different subthread, Donald argued:

I'm in the increasingly untenable position of being expected to maintain
drivers for the current and older kernels, but not having any influence over
the new development exactly because of that backwards compatibility. It's
no fun being responsible for just the old versions, especially after I did
years of unpaid development work.

There were many interface changes added incrementally in the 2.3 kernels.
Some were added without consideration of, or even in opposition to, cross-
version compatibility. And few of those interface changes were designed,
as opposed to just hacked in. When I proposed an new PCI detection
interface I wrote a skeleton driver, converted several of my drivers,
demonstrated that it worked with several hardware classes and wrote a
usage guide. But the few day hack was added because the patches were
incremental (even if misdesigned and broken).

Linus replied:

Donald, that's not true, and you know it.

Neither I nor anybody else has expected you to maintain the drivers for
quite a long time now - you just didn't seem to have the interest, and a lot
of people have acknowledged that. That is why there ARE new maintainers
for things like tulip and eepro100, whether you like it or not.

You did not lose influence of the drivers because you want to maintain
backwards compatibility. You lost influence over the drivers simply
because you never bothered to send in your changes. Don't start blaming
anybody else.

As the outline of the driver developer flame war shows, the open source model has

conflicts, and reputation and authority can be gained and lost. As the comments of Linus

Torvalds reveal, the breaking of expectations can lead to neglect of contributions, thus

effectively destroying the possibilities to gain reputation within the community. When the

reputation has decreased enough, it becomes easy for someone to start parallel

development. Eventually this can lead to explicit transfer of “ownership” rights.

The question is, however, also about the locus of control. Donald, as a driver developer,

prefers that the kernel stays stable so that he can more easily develop his software. Linus,

however, indicates that in the Linux community, the kernel is the central artifact, and

 45

driver developers should adjust to the requirements of kernel development. Donald’s

position is therefore rather similar in relation to the kernel as kernel developers’ position

to the GNU c-compiler. As was noted above, the kernel developers argue that the

compiler version needs to be held constant to effectively debug problems in the new kernel

releases. By following such discussions, novice developers can learn how the open source

development is interpreted in practice, and what are the taboos that should not be broken.

As can be seen from the example above, the open source model is not restricted only to

the software code; instead, it implies a code of conduct, which is supported by a

socialization process that also occurs in the open source mode. The negotiation of social

practices and the development of reputation can be observed by the global community in

real-time.

Rules and regulations

As was noted above, procedures that underlie Linux development, are often learned when

novice developers become socialized into the community. Many of the procedures and

practices are also embedded into the functionality of the tools that support the

development. There exists, however, also important explicit standards and agreements that

are key components in the development system. On a technical level, one such standard is

the ISO Posix interface standard, which defines the way application programs can use the

kernel functions. The licensing policy that defines the open source model is a central social

innovation that underlies Linux. Indeed, a lot of social order is encoded and embedded

into the licenses and documents that describe different licensing alternatives.

There exist several variations of commonly used open source license policies, some of

which are more restrictive than others. In a clear contrast to the typical use of copyright

licenses, which restrict the ways the copyrighted work can be used, the main goal of the

free software licenses is to guarantee the ongoing re-use and development of software.

In commercial software, the license terms are designed to protect the copyright.
They’re a way of granting a few rights to users while reserving as much legal
territory is possible for the owner (the copyright holder). The copyright holder is

 46

very important, and the license logic so restrictive that the exact technicalities of
the license terms are usually unimportant…In free software, the situation is usually
the exact opposite; the copyright exists to protect the license. The only rights the
copyright holder always keeps are to enforce the license and to change the license
terms of future versions. Otherwise, only a few rights are reserved and most
choices pass to the user. In particular, the copyright holder cannot change the
terms on a copy you already have. Therefore, in free software the copyright holder
is almost irrelevant—but the license terms are very important.18

Free software licenses guarantee various rights to use, modify, distribute, and distribute

modified code. According to the Debian Free Software Guidelines, and the Open Source

Definition that has been derived from it, there are several requirements that a software

component must meet.19 First, the license must guarantee that the code may be freely

distributed without royalties. Second, the source code must be easily available, and the

license must not restrict the distribution of the source code. Third, the license must allow

distribution of modifications and derived works under the same terms as the original code.

These are the main characteristics of open source software. In addition, to comply with

the Debian Guidelines and Open Source Definition, the license may restrict distribution of

modified source code only if it allows distribution of “patch files” that can modify the

original code at the compile time. This is to simultaneously guarantee that the original

programmer can maintain the integrity of his or her code, and that subsequent

modifications are still possible by adding new “patches.” In addition, the license must not

discriminate against any persons or groups, or against any uses, including commercial use.

The license must also apply to all to whom the program is distributed, without the need to

write separate license agreements. Further, the license must not require that the program

be used as a part of a specified software distribution. To avoid contamination of licenses,

for example by requiring that the program be distributed only together with other

programs that have similar licenses, the license must not place restrictions on other

programs.

18 “Free software licensing alternatives.” http://metalab.unc.edu/pub/Linux/LICENSES/theory.html

19 “A social contract.” http://www.debian.org/social_contract.html

 47

The least restrictive form of license is public domain, which puts no restrictions on the use

or distribution of the original code. It can be freely copied, used, and modified for any

purpose. If a public domain program is available as source code, it adheres to the Open

Source Definition. A rough estimate of the use of public domain licenses is that in mid-

1997 about 3 per cent of about 2600 software packages and documents on the Sunsite

server were defined as public domain sources.20 Public domain licenses are therefore not

very common within the open source community.

The least restrictive commonly used license is the MIT or X consortium license, which

requires only that the original copyright and license terms are included in the distribution.

Shareware programs often use this type of license, although they may also request a

donation from users who find the program useful. A slightly more restrictive license is the

BSD-license, which requires that all documentation and advertisements acknowledge the

original copyright holder. Freely Redistributable Software, in turn, has a FRS license,

which requires that software can be freely copied, used, and locally modified. It must also

grant the right to distribute modified binaries, although it can put some restrictions on the

ways the modified source code can be distributed. To be “open source,” FRS restrictions

have to adhere to the Open Source Definition, however.

The most widely used free-software license is the GNU General Public License, or GPL.

This is the license under which the core Linux system is distributed. It allows free copy,

use, and modification. Modified source code can be redistributed if the modified source

code shows a “prominent notice” of the modification. There is also a requirement that an

interactive GPL program displays a start-up notice that shows it is a GPL program. More

interestingly, however, the GPL license also requires that if a program contains

components that are licensed under GPL, all the components must have a GPL.21 This last

20 http://metalab.unc.edu/pub/Linux/LICENSES/theory.html

21 GPL was originally defined by the Free Software Foundation, with the explicit aim to promote non-
proprietary software. GPL proponents argue that proprietary software limits innovation, and that fair use
of software should be allowed in the same way as fair use of scientific results. Richard Stallman (1999),
the founder of Free Software Foundation, has noted that the recent open source movement has to a large

 48

requirement of GPL has no simple interpretation in practice (Perens, 1999). To enable

commercial programs to be developed for the Linux platform, the license in Linux

explicitly declares that the use of the system is not considered to generate a derivative

work. This means that commercial and proprietary programs can use Linux even when

they don’t want to use GPL. The original idea in GPL was that it shouldn’t be possible to

change open source software proprietary by adding to it some proprietary components

(Stallman, 1999).

The license, although important, is only part of the story, however. There are several

explicit and implicit expectations that define appropriate behavior within the open source

community. For example, the Debian GNU/Linux community has defined a “social

contract” that declares its commitments to keeping the programs free software,

transparency in handling software bugs, and support for users who develop commercial

and restricted software based on the free software developed by the community.

Moreover, the rights to distribute key components of programs are tightly controlled by

informal social mechanisms. A key factor in open source development is, however, the

fact that formal contracts are intended to promote development, not to restrict it.22

Property rights are used here to enable symbiotic development, instead of competition.

In the course of time, commercial interests have become increasingly important in the

Linux community. In the beginning, Linux development was closely aligned with the free

software movement. Linux development was explicitly defined as a non-commercial

extent neglected the ethical implications of software licensing, and focused on a short-sighted way to the
productivity aspects of the open source model.

22 Open source projects therefore also remind us that there are intellectual properties for which
appropriation of returns on investment is not a major issue. It is also interesting to note that in the historic
controversies on patent rights (c.f., Machlup & Penrose, 1950) the proponents of free market argued that
patent rights may slow down development as they distort markets and do not necessarily allocate returns
to those who contributed to the invention. Both free market advocates and proponents of patent
monopolies, however, missed the possibility that technological development can result from giving away
monopolies.

 49

project. In 1992 Torvalds noted that the only exception for the free use of the code was

the restriction that someone creates a commercial product out of it:

The only thing the copyright forbids (and I feel this is eminently reasonable) is that
other people start making money off it, and don’t make source available etc…This
may not be a question of logic, but I’d feel very bad if someone could just sell my
work for money, when I made it available expressly so that people could play
around with a personal project. I think most people see my point. (quoted in
DiBona, Ockman, & Stone, 1999:248)

More recently, commercial organizations have become important actors in the Linux

development system. This has created tensions and continuing discussions on the way

open source licensing can be applied in practice (e.g. Perens, 1999). Raymond argues that

the open source definition is a major improvement to the original GNU license policy, as it

explicitly allows commercial software developers to join the Linux development

community. This evolution of licensing policy can be viewed as one example of the ways

in which the socio-technical system changes its social expectations in a response to the

increasing variety of actors in the developer community.

When the institutions of licensing are viewed as social innovations, it is possible to see that

also social innovations can be a source of path dependence in socio-technical evolution.

When the Open Source Definition is used as a guideline for licensing, it becomes very

difficult to return to the closed source mode. Indeed, this was exactly the intention of the

Free Software Foundation when it designed the GNU license, with the aim of

guaranteeing that the results of technical work can accumulate. The Open Source

Definition, with its less contagious licensing policy, however, makes it possible to

incrementally develop closed extensions to the Linux system. In practice, this may be

difficult as most developers rely on the collective resources of the community, and unfair

free-riding easily leads to social exclusion. The transparency of the open source

development model also means that it is difficult to hide such attempts of free-riding.

 50

Why Linux works: Linux as modern economy

Torvalds has frequently noted that his approach to design is pragmatic. The pragmatic

approach has, for example, meant that he has mainly been interested in the portability of

the system across existing computer architectures, and theoretical designs that were

supposed to support portability have been of secondary importance. A somewhat

surprising result is that this pragmatic approach to portability actually has led to easily

portable systems. According to Torvalds the main idea was to design Linux so that it

operates on “sane” computer architectures (Torvalds, 1999:104-5). Instead of abstracting

operating system principles from theoretical research on operating systems, Linux has

implicitly abstracted existing operating system architectures, and best practices that had

evolved in previous implementations. Whereas operating system research in most cases

starts from logical and computational considerations—and only afterwards tries to

overcome practical implementation constraints—the development of Linux has followed

the opposite route. Linux can therefore be seen as an example of grounded theory, where

theoretical constructs emerge through observation and conceptualization of practice

(c.f.Glaser & Strauss, 1967).

Although there are similarities in the social systems that underlie scientific disciplines and

Linux development, there are also important differences. The main difference is that the

Linux community constructs a shared technological artifact. This artifact, i.e., software

source code, enables social processes that seem to be in some ways more effective than

those of traditional sciences. In the case of Linux, accumulation is an objective fact.

Whereas the traditional view saw scientific progress as accumulation of increasingly

accurate representations of reality, Linux development constructs its reality in an ongoing

process. Linux, as a shared technological artifact, acts as a common reference point to the

community.

This shared artifact makes the dynamics of reputation different from those that organize

scientific research. In contrast to traditional academic disciplines, where reputation is

tightly personalized, in the Linux world reputation can also be attached to parts of the

technological artifact.

 51

There are also some potential explanations why the taboos of Linux community work.

When newcomers have the possibility to make important contributions to the community

project, they have strong incentives to do just that. In a way, the Linux community

implements the idea that anyone can be a star, and it only depends on your effort. Here it

perhaps reproduces some of the values and rhetoric of Silicon Valley. In practice, Linux

development, however, is a collective effort, and achievement is possible only by using

collectively created resources. As the developers build on existing contributions, the gift

givers eventually get their gifts back in an improved format. There is no “tragedy of

commons” or “winner takes all” in this space of technical artifacts, but only positive

returns. As long as the quality system works, the more you give, the more you get.

Under such conditions, a critical success factor is the capability to mobilize collective

resources for promising new directions. This, in turn, requires that there are effective ways

to manage attention. In addition to its important role in the allocation of control,

reputation is also a key in the management of attention. However, as the case of Linux

shows, a successful project may attract so much attention that strong social filters are

needed to avoid overload at the centers of power. In addition to expectations that

newcomers learn in the socialization to the community practices, also technology is used

to maintain social filters. For example, the linux-kernel mailing list has so much traffic that

it is impossible for most members to read all messages in detail. Many readers, therefore,

use mail scripts that automatically delete mail. Sometimes deletion is based on the topic,

but sometimes also based on the sender. Although Linux development has been

characterized above as an open social process that occurs in a collaborating community,

this, of course, does not mean that the community would not exclude some potential

members. In practice, social exclusion is often implemented using the same computer

programs that the community develops.

In a system where every sub-project is potentially important to the overall success, and the

only way to evaluate the value of contributions is by evaluating them after the results are

generated, it is useful to celebrate the results, and downplay the status of individuals. Such

a policy guarantees that authority is tightly linked to competence and responsibility, at the

 52

same time making continuous revolution possible. This, however, also requires that the

community understands that the celebration of results implicitly celebrates their producers.

Therefore it is critical that the source code files keep an accurate and open record of the

contributors to the project. In knowledge intensive work, commitment is critical, and any

perceived unfair distribution of rewards very rapidly deteriorates commitment.

The visible humility of tribal elders in the Linux community has, however, also another

potential explanation. In technical terms, humility is useful for flexibility. When there is no

rigid social hierarchy, the system can rapidly utilize emerging opportunities and develop

into new directions. The growth of the system is not limited by its starting points; instead,

it grows where the growth is fastest. This is of fundamental importance. Linux is not a

pre-defined product; instead, its developers can plug in their own interests and interpret

the possibilities of the accumulated system from their own perspectives.

Linux, therefore, seems to represent a socio-technical system where resources consist of

technological artifacts, tools and resources, social innovations embedded in institutions,

and collective competences. These different components of the system develop

simultaneously. A distinctive character of the open source model is that the boundary

between ideas and implementation is not clear, and innovative ideas are often inseparable

from their implementation. Source code is used as an external knowledge base and a

cognitive tool, and cognitive resources are distributed among technological artifacts and

humans. The development directions are to a large extent based on management of

attention and accumulation of reputation.

Linux development is based on a complex interplay between social practices and a focal

technological artifact. Any single driving force, for example, financial rewards, cannot

explain Linux development. We do things that allow us to use our competences and

develop them, which our peers appreciate, and which are meaningful in the social context

we are in. Linux development, therefore, is not a result of any specific economy based on

transactions, bartering, or exchange of gifts. Instead, it is better characterized as a form of

social life. The artifact that organizes this form of life emerges as people go on with their

 53

lives in ways that are meaningful to them. In this sense, Linux development is totally

endogenous: the technological artifact can be seen as a side-effect of the fact that people

live in a social world.

Since Schumpeter economists have assumed that innovation is about economic change.

More exactly, innovation has been defined as something that has direct economic

implications. According to this view, technological change becomes innovation only when

it changes production functions that relate economic inputs to economic outputs. The

Linux case shows, however, that there can be technological change that is not captured by

this definition of innovation. Yet, Linux obviously has potentially very important

implications for software industry and for the rest of the economy. In other words,

although there exist, of course, many links between technological and economic

development in the modern society, they are not causally related. Therefore it is not

obvious that we can explain economic growth by technological development. Nor it is

obvious that we can explain technological development using economics. To put

technology and economy under the same explanatory framework probably requires that

we turn back to the sociology of economic processes and, indeed, explain economy itself

as one of the sophisticated technologies of modern society.23

Berman (1982) characterized the modern mentality as a set of culturally shared beliefs.

According to Berman, modern mentality is composed of strong individuality, belief in self-

directed reason, assumption of the individual as the locus of control, commitment to

progressive improvement, generally optimistic outlook, and a strong belief in meritocracy

and social mobility. In the Linux community, these beliefs are easy to detect. For example,

23 Simmel’s (1990) observation was that money is the most perfect tool. In this sense, we can say that
economics never really neglected technological innovation, but was, indeed, a discipline that studied the
implications of one technology, money. A sociological and cultural starting point, however, leads us to
discuss economic systems as forms of socio-technical systems. I am not aware that such economic theories
would currently exist. It seems, however, that they could be developed from the sociocultural activity
theory (Leont'ev, 1978). Indeed, Engeström (1987) tried to develop a version of activity theory where
exchange, division of labor, productive action, and technology are parts of the same structure of human
activity. Engeström’s focus, however, was on theory of learning.

 54

Raymond (1999) notes that in the hacker community the best craftsmanship wins. There is

a very strict rhetoric of meritocracy. In theory, everyone is judged based on the quality of

the results, and seniority comes into play only in those exceptional cases where peers

cannot judge quality, or when ownership rules do not work. The great commitment and

enthusiasm of Linux developers indicate that the developers believe that their efforts and

contributions matter, and that the system, as a whole, is improved as a result of these

efforts. The joy of hacking, in turn, is very much about getting control over a constructed

world, and becoming a wizard in such a technological world.

The way Linux developers live, indeed, reflects major currents in the modern world. This

is also probably one of the reasons why the Linux community has been so successful in

technological development. The social system of Linux community is not only aligned with

the needs of the community itself. Instead, it is also aligned with important components of

the broader social system where the development transpires.

Although it is important to note that in other cultural settings such modern beliefs do not

necessarily organize social systems, in this case technology development indeed is closely

linked to the modern worldview. The culture of hacking is probably the most perfect

implementation of modernity, and therefore it also produces technological products

effectively. There are no deep internal conflicts within the culture of hacking that would

compromise its efficiency. Indeed, as long as it builds itself around those technological

artifacts that it produces, it is able to avoid many of those conflicts that make similar

efficiency difficult in broader social contexts.

The values of modern technological society are closely aligned with the values of the

Linux development community. It would, indeed, be surprising to see successful

technology development projects where the values of modernity were strongly contested.

It is difficult to imagine successful collaborative development of technological artifacts in a

cultural setting where the developers would believe in unpredictable accidents, irrelevance

of one’s own interests and decisions, belief in the inevitable deterioration of the developed

system, and questionability of the meaning of the whole effort. In this sense, successful

 55

technology development requires modern values. But even within modern high-tech

organizations there are important cultural differences that may constrain or facilitate open

source development. For example, the Linux development model seems to require a

culture with low power distance and low uncertainty avoidance. This has interesting

consequences, as it is well known that the regions of the world differ greatly in this respect

(Hofstede, 1991). Indeed, it may have some relevance that Finland and the U.S.A. happen

to be countries with the least power distance and uncertainty avoidance.

The Linux community consists of members who live in many different local cultures. In

this sense, the Linux community is an interesting case of a “global” culture, and it might

provide important insights of the mechanism that link regional cultural resources to global

technological development. For example, Freeman, Clark, and Soete (1982), and Perez

(1985) argued that the long cycles in economy require that forms of production,

organizational structures, banking and credit system, and other social institutions change

before productivity of a new key technology can be realized. The rigidity of social

institutions, essentially, was the reason why long cycles are long. In the case of Linux we

can see a process of socio-technical change where these assumptions are not necessarily

appropriate. The social system is continuously negotiated, on-line, according to the

problems and opportunities generated in the process. In this sense, Linux could also be

analyzed as an example of socio-technical development that escapes the logic of long

cycles. The innovation process that underlies Linux development, therefore, could also

give a concrete example of what the discourse on “new economy” is about.

Although social and scientific progress has often been associated with meritocracy, social

mobility, and individualistic appropriation of opportunities, in the case of Linux this ideal

world is in fact implemented. Here Linux development also differs from any system of

economy. People construct the same collective artifact, interpret it from their own

perspectives, and adapt it for their own practices. The dynamics of the technological

artifact and the social system that produces it are well aligned. The speed of development

is fast because there are no fundamental contradictions in the co-evolution of the

community and its artifacts.

 56

Linux development proceeds in such an expanding galaxy of technical artifacts and social

relations. Fired by the engines of modernity, its boundaries explode into the space of

technological possibilities. Indeed, one cannot but wonder whether it is just because of the

abstract nature of this space that it has been so successful in its emergent goals. In the

world of Linux, modern technological economy is perfectly realized. And—

paradoxically—we find ourselves once again in the beginning of time, in the economy of

gifts.

 57

References

Armstrong, M. (1998). Kernel architecture. http://se.math.uwaterloo.ca/~mnarmstr/report2 .

Berman, M. (1982). All That Is Solid Melts into Air. New York: Simon & Schuster.

Blumenberg, H. (1985). Work on Myth. Cambridge, MA: The MIT Press.

Bradner, S. (1999). The Internet Engineering Task Force. In C. DiBona, S. Ockman, & M. Stone
(Eds.), Open Sources: Voices from the Open Source Revolution. (pp. 47-52).
Sebastopol, CA: O'Reilly & Associates, Inc.

Brooks, F.P. (1995). The Mythical Man-Month: Essays on Software Engineering. Reading, MA:
Addison-Wesley.

Brown, J.S., & Duguid, P. (1991). Organizational learning and communities of practice: toward a
unified view of working, learning, and innovation. Organization Science, 2, pp.40-57.

Brown, S.L., & Eisenhardt, K.M. (1995). Product development: past research, present findings,
and future directions. Academy of Management Review, 20 (2), pp.343-78.

Cole, M. (1996). Cultural Psychology: A Once and Future Discipline. Cambridge, MA: The
Belknap Press of Harvard University Press.

Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York:
HarperCollins Publishers.

Dewey, J. (1991). How We Think. Buffalo, NY: Prometheus Books.

DiBona, C., S. Ockman, & M. Stone. (1999). Open Sources: Voices from the Open Source
Revolution. Sebastopol, CA: O'Reilly & Associates, Inc.

Engeström, Y. (1987). Learning by Expanding: An Activity Theoretical Approach to
Developmental Work Research. Helsinki: Orienta Konsultit.

Freeman, C., J. Clark, & L. Soete. (1982). Unemployment and Technical Innovation: A Study of
Long Waves and Economic Development. Westport, CT: Greenwood Press.

Glaser, B.G., & A.L. Strauss. (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research. Hawthorne, NY: Aldine Publishing Company.

Griffin, A. (1997). PDMA research on new product development practices: updating trends and
benchmarking best practices. Journal of Product Innovation Management, 14, pp.429-
58.

Hofstede, G. (1991). Cultures and Organizations: Software of the Mind. London: McGraw-Hill
Book Company.

 58

Lave, J., & E. Wenger. (1991). Situated Learning: Legitimate Peripheral Participation.
Cambridge: Cambridge University Press.

Leont'ev, A.N. (1978). Activity, Consciousness, and Personality. Englewood Cliffs, NJ:
Prentice-Hall.

Lynn, L.H., Aram, J.D., & Reddy, N.M. (1997). Technology communities and innovation
communities. Journal of Engineering and Technology Management, 14, pp.129-45.

Machlup, F., & Penrose, E. (1950). The patent controversy in the nineteenth century. The
Journal of Economic History, X (1), pp.1-29.

Mahajan, V., & Wind, J. (1992). New product models: practice, shortcomings and desired
improvements. Journal of Product Innovation Management, 9, pp.128-39.

Miles, R.E., Snow, C.C., Mathews, J.A., Miles, G., & Coleman, H.J., Jr. (1997). Organizing in
the knowledge age: Anticipating the cellular form. Academy of Management Executive,
11 (4), pp.9-24.

Mintzberg, H. (1979). The Structuring of Organizations. Englewood Cliffs, NJ: Prentice-Hall.

Nonaka, I., & H. Takeuchi. (1995). The Knowledge-Creating Company: How Japanese
Companies Create the Dynamics of Innovation. Oxford: Oxford University Press.

Perens, B. (1999). The Open Source Definition. In C. DiBona, S. Ockman, & M. Stone (Eds.),
Open Sources: Voices from the Open Source Revolution. (pp. 171-188). Sebastopol, CA:
O'Reilly & Associates, Inc.

Perez, C. (1985). Microelectronics, long waves and world structural change: new perspectives for
developing countries. World Development, 13 (3), pp.441-63.

Powell, W.W., Koput, K.W., & Smith-Doerr, L. (1996). Interorganizational collaboration and the
locus of innovation: networks of learning in biotechnology. Administrative Science
Quarterly, 41 (1), pp.116-45.

Raymond, E.R. (1999). The Cathedral and the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. Sebastopol, CA: O'Reilly & Associates, Inc.

Schon, D.A. (1963). Invention and the Evolution of Ideas. London: Social Science Paperbacks.

Simmel, G. (1990). The Philosophy of Money. Second Enlarged Edition (first edition 1900).
London: Routledge.

Stallman, R. (1999). The GNU operating system and the free software movement. In C. DiBona,
S. Ockman, & M. Stone (Eds.), Open Sources: Voices from the Open Source Revolution.
(pp. 53-70). Sebastopol, CA: O'Reilly & Associates, Inc.

Tanenbaum, A.S., & A. Woodhull. (1997). Operating Systems: Design and Implementation (2nd
ed.). Upper Saddle River, NJ: Prentice Hall.

 59

Torvalds, L. (1999). The Linux edge. In C. DiBona, S. Ockman, & M. Stone (Eds.), Open
Sources: Voices from the Open Source Revolution. (pp. 101-111). Sebastopol, CA:
O'Reilly & Associates, Inc.

Tuomi, I. (1999). Corporate Knowledge: Theory and Practice of Intelligent Organizations.
Helsinki: Metaxis.

Van de Ven, A.H. (1993). A community perspective on the emergence of innovations. Journal of
Engineering and Technology Management, 10, pp.23-51.

Von Hippel, E. (1988). The Sources of Innovation. New York: Oxford University Press.

Weizenbaum, J. (1984). Computer Power and Human Reason: From Judgement to Calculation.
Harmondsworth: Penguin Books.

Wertsch, J.V. (1998). Mind as Action. Oxford: Oxford University Press.

Wiener, N. (1975). Cybernetics: or Control and Communication in the Animal and the Machine.
Cambridge, MA: The MIT Press.

