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Abstract: 

This paper describes some key principles that underlie development of the Linux 

operating system, and discusses their implications for innovation research. Using 

Linux as a case example, I will discuss organizational, institutional, economic, 

cultural, and cognitive aspects of the open source development model and 

technological change. 
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Introduction 

According to user surveys, the Linux operating system is rated as the best operating 

system available. It is considered to be more reliable than its main competitors. Its 

functionality is claimed to be better, and according to many experts, new releases of Linux 

implement innovative ideas faster than its competitors. In other words, it is argued that 

Linux development creates complex new technology better and faster than the biggest 

firms in software industry.1 Yet, Linux also seems to break many conventional 

assumptions that underlie research on innovation and technological change. Linux is 

developed by an informal self-organizing social community. There is no well-defined 

market or hierarchy associated with it. Most of Linux development occurs without 

economic transactions. Instead of getting paid for their efforts, the developers often spend 

a lot of money and effort to be able to contribute to the advancement of the development 

project. 

The open source development model, which underlies Linux, has attracted increasing 

attention in the last years. Today, Linux is considered to be a serious threat to Microsoft’s 

market dominance in operating systems. More generally, open source development 

projects have in recent years had major impact in software and internet-based industries. 

For example, over 60 per cent of Internet connected Web servers were open source 

Apache servers in March 2000. As can be seen from Figure 1, the second most popular 

Microsoft servers were about one third as popular with 21 per cent. Some open source 

projects, such as Sendmail and Emacs, have achieved large market shares, making it 

difficult for commercial enterprises to enter the market. The Internet Engineering Task 

Force, which defines standards for the Internet, has also used an open source approach 

since its formation in 1986 (Bradner, 1999). Several commercial software firms have tried 

to adopt aspects of the open source model. For example, Netscape announced in 1998 

that it would distribute the source code of Netscape communicator with open source 

                                                

1 http://www.uk.linux.org/LxReport.html 



 3

license. IBM decided to use the open source Apache server as the core of its Web server 

offers. Red Hat, in turn, thrives on packaging Linux distributions, and producing added 

value for Linux users. In all these cases, business firms are experimenting with ways to 

benefit from innovation that occurs in the open source communities. Instead of traditional 

economic competition, such initiatives rely on symbiotic relationships, and on the 

willingness of developer communities to collaborate. 

 

Figure 1. WWW servers connected to the Internet.2 

This paper focuses on the Linux operating system kernel. I will describe its history and 

development model to discuss the organization and drivers of innovation in modern global 

economy. As the paper is heavily based on one specific software development project, I 

will also discuss the possible ways the learnings from this specific case may be generalized. 

A subsequent paper will further continue this work by linking the empirical results of this 

paper to the theory of innovation, research on product development, and technology 

policy. 

In much of the innovation literature, innovation is defined as something that has economic 

impact. The case of Linux shows that this definition is problematic and possibly misleading 

in important practical cases. During its history, most Linux development has occurred 

independent of direct economic concerns. It would be tempting to argue that Linux 

development is different from “economic activity” and something that, strictly speaking, 

                                                

2 Source: Netcraft, http://www.netcraft. com/survey/. 
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should not be called innovation. Indeed, Linux development has not in any obvious way 

been associated with changes in production functions, market competition, or 

appropriation of economic investment and surplus. This, in itself, makes Linux an 

interesting test case for economic theories of innovation and technology development. For 

example, the case of Linux allows one to question to what extent existing economic 

models of innovation and technological development capture phenomena that underlie 

collective production of new technologies. 

In very practical terms, Linux is an economically important phenomenon. Indirectly, the 

success of many new businesses, venture capitalists, investment funds, and individual 

investors critically depends on the productive activities of the Linux community. Yet, 

when we consider the entire history of Linux, the economic impact seems to appear almost 

as an afterthought and as a side effect of a long period of technology creation, in a way 

that seems to break commonly accepted rules of innovation and technology development. 

Linux, therefore, provides an interesting history of globally networked innovation, 

illustrating the substance that underlies the discussions on the “new economy.” 

From a theoretic point of view, Linux is an interesting case as it enables us to discuss 

those social and cognitive phenomena that underlie technological change. In that sense, it 

enables us to penetrate some black boxes of innovation theory, including such widely used 

concepts as learning, capability, utility, and consumption. By observing the development 

of Linux, we can describe the microstructure of innovation, and transcend the boundary 

between invention and innovation. Linux development is collective productive activity, 

and the products of this activity are externalized as technological artifacts and discourses, 

which can be observed relatively easily. There exists sufficient documentation on the 

history and practices of Linux development so that we can—at least tentatively—describe 

some key principles that underlie Linux development. 

From a practical point of view, the case of Linux also provides a test case for analyzing 

product development models and proposals for organizing for innovation. Specifically, the 

extensive use of modern communication and collaboration technologies in Linux 
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development highlights some aspects of technology development that were not easy to see 

in earlier studies on innovation. 

This paper is organized as follows. First, I will briefly describe the Linux system and its 

developer community in an evolutionary context, highlighting some main characteristics of 

the socio-technical change that has led to the current Linux system. I will then discuss the 

organization of this technology creation process, focusing on control and coordination 

mechanisms. I will describe in some detail the ways the Linux community has managed the 

trade-offs between innovation and maintainability of the increasingly complex system, and 

discuss how the learnings of effective coordination and control mechanisms have been 

embedded in the system architecture. 

Linux has attracted considerable attention because it has been argued that the open source 

quality control mechanisms are more effective than traditional methods used in software 

development. It has often been argued that Linux is more reliable than proprietary systems 

because it is developed using the open source principles. I will describe the quality control 

system, analyzing in some detail the Linux bug removal process and the complex socio-

technical system that underlies it. 

As was noted above, innovation literature sometimes leaves the process of invention into a 

black box where undefined psychological forces operate outside the domain of innovation 

research. The drivers for innovation are commonly understood to be economic. In this 

context, it is interesting to analyze the incentives and drivers of technology development, 

as they can be observed in the case of Linux. I will do this, describing the reputation and 

attention management processes that underlie Linux. Reputation and attention are shown 

to be closely related in the Linux community, and they are the key to resource allocation, 

which, in turn, directs technology development. 

Open source development is a special form of technology development as it intentionally 

reverses some common intellectual property rights. Instead of copyright it uses “copyleft,” 

which guarantees the rights of users to modify the results of development, and derive new 

works from it. The fact that such a licensing model seems to work and promote 
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technology development has important consequences for discussions on intellectual 

property rights, patent system, and the theory of appropriation of the results of innovation. 

The open source licensing policy can be seen as an important social innovation that has 

major impact to the way Linux is developed. I will discuss regulations and standards that 

underlie Linux development, focusing on the various forms of licensing that have been 

used in the open source community. 

Finally, I will conclude by drawing together some results from this descriptive and 

empirical analysis, putting them into the context of the global dynamics of modern 

economy and innovation. 

The present case study of Linux development covers a broad set of issues. It is, of course, 

impossible to deal with all those issues in the depth they deserve within a single paper. The 

goal of this paper is to provide a rich enough description of the case for further 

discussions, as well as to open the area for more detailed theoretical and empirical study. 

Evolution of Linux and its developer community 

Linux development started in 1991 when Linus Torvalds got a new Intel 386 PC and 

wanted to learn it. In the beginning, Torvalds didn’t expect that anyone would use Linux. 

It was, however, developed to be compatible with widely used Unix tools, and its source 

code was made available for anyone who was interested. As a result, people who wanted 

to have a Unix-like operating system on their Intel-based PC’s quickly adopted Linux and 

started to add new functionality to it (Torvalds, 1999). 

Linux was inspired by a small Unix-like operating system Minix, and many early adopters 

were familiar with Minix. Minix had been developed by professor Andrew Tanenbaum to 

teach operating systems for students who had only the first generation PC’s available. 

Whereas Minix was intended to introduce the basic theoretical concepts of operating 

system design, Linux was a more pragmatic project. The goal was to develop an operating 

system that worked well on Intel 386, and which users were free to modify and play with 

(DiBona, Ockman, & Stone, 1999: 221-51).  The first version of the system was release 
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0.01, September 1991. Although it is difficult to find accurate data on the usage of Linux, 

today there are probably over 12 million Linux users worldwide.3 Indirectly, almost all 

people who are connected to the Internet use Linux, as many Web-servers rely on it. 

Linux, and its open source development model, started to attract attention around 1994. 

Until that time the Berkeley BSD Unix had been the most visible open source 

development activity. It was generally believed that the era of Unix-based operating 

systems was over, and that Microsoft had secured its position as the dominant player in 

the operating system market. As an indication of this the Berkeley Unix development 

group was formally shut down (Raymond, 1999:22-3). The success of Linux became as a 

surprise to its developers, but also to people who had been closely observing the evolution 

of software and open source projects. In his influential article4, Eric Raymond describes 

how Linux made him realize that there exists a new mode in software development: 

Linux overturned much of what I thought I knew. I had been preaching the Unix 
gospel of small tools, rapid prototyping and evolutionary programming for years. 
But I also believed there was a certain critical complexity above which a more 
centralized, a priori approach was required. I believed that the most important 
software (operating systems and really large tools like Emacs) needed to be built 
like cathedrals, carefully crafted by individual wizards or small bands of mages 
working in splendid isolation, with no beta to be released before its time. 

Linus Torvalds’s style of development—release early and often, delegate 
everything you can, be open to the point of promiscuity—came as a surprise. No 
quiet, reverent cathedral-building here—rather, the Linux community seemed to 
resemble a great babbling bazaar of differing agendas and approaches (aptly 
symbolized by the Linux archive sites, who’d take submissions from anyone) out 
of which a coherent and stable system could seemingly emerge only by a 
succession of miracles. 

The fact that this bazaar style seemed to work, and work well, came as a distinct 
shock. As I learned my way around, I worked hard not just at individual projects, 
but also at trying to understand why the Linux world not only didn’t fly apart in 

                                                

3 http://www.linux.org/info 

4 http://www.tuxedo.org/~esr/writings/cathedral-bazaar/ . The article is also included in Raymond (1999). 
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confusion but seemed to go from strength to strength at a speed barely imaginable 
to cathedral-builders. (Raymond, 1999:29-30) 

Linux is a fast growing system. The core Linux—the operating system kernel—consists of 

software that controls computer hardware and programs that run on it. When new 

interesting hardware becomes available, the operating system kernel is extended for it. 

Usually, Linux code for specific hardware components is developed as “drivers.” Linux is 

available for several different processor architectures and therefore there also exists 

several “ports” of the system. 

An operating system can be built based on several different architectures. The architecture 

of Linux has been strongly influenced by the Unix operating system. Unix architecture is 

implemented as layers, where each layer provides service to the layer above it (Tanenbaum 

& Woodhull, 1997). The bottom layer interfaces the software with hardware. A layered 

operating system can be represented as in Figure 2. The system kernel usually takes care 

of process, memory, file, security, network, and input and output device management. 

Utility or system programs are applications that provide key services that are needed for a 

functional operating system. In a Unix system, graphical user interfaces, user management, 

command shell, file backup, and, for example, directory listing programs are examples of 

such system utilities. These programs use the functionality provided by the kernel by 

calling system functions through the system call interface. The various end-user 

applications, such as word processors, database management systems, and web browsers, 

can use both utility programs and system calls to interface with the operating system. The 

operating system kernel, in turn, uses the underlying hardware through hardware-specific 

drivers that convert operating system calls into low-level hardware programs. 
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Figure 2. Layers of a Unix operating system. 

An operating system kernel is not a very useful thing in itself. A fully functional operating 

system needs system utility programs and applications before it becomes a multipurpose 

platform that can support and run end-user applications. In practice, Linux relies on a 

large set of other open source programs to form a fully functional operating system. Most 

critical of these are the GNU c-language compiler and the GNU c-libraries, which are 

required for developing the system. A distinction is often made between the Linux 

operating system itself, and the set of open source applications, including the kernel, that 

together make a functional environment. The operating system kernel is usually called 

Linux and the complete system is called GNU/Linux. 

The end-users of Linux mainly deal with large software distributions that comprise 

hundreds of applications in addition to the operating system. For example, the Debian 

distribution of GNU/Linux has over 1500 open source programs, including word 

processors, graphics programs, databases, and web-servers and clients.5 The evolution of 

Linux-based systems is therefore only loosely coupled with the evolution of Linux itself. 

For example, the functionality of GNU/Linux has grown considerably when major 

software providers have recently started to port their systems for Linux. 

                                                

5 http://www.debian.org 
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In this paper, I will focus on the development of the Linux operating system kernel. 

Already in itself, it provides an interesting example of technology development. Since the 

first release of Linux, there has been about one new version of the system released every 

week. During this same time, the total size of the kernel code has grown from 236,669 

characters in the distribution files to over 78 million characters. In other words, the code 

size has grown 333 times.6 The different versions and their relative sizes are shown in 

Figure 3. The figure shows sizes for the compressed kernel source code packages. The 

actual code size is typically about four times larger. 
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Figure 3. Linux kernel distributions. 

From Figure 3 one can note one of the key characteristics of Linux development. The 

kernel releases are divided into “stable” and “developmental paths. In practice, the releases 

are numbered using a hierarchical numbering system where the first number denotes a 

major version, and the second number gives the version tree in question. In the recent 

                                                

6 For the purposes of this paper, I will measure code size in characters, counting comments and 
documentation as parts of the source. 
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years, the even numbered trees have been stable production releases, and the odd 

numbered trees have been “developmental” releases, where new features and functionality 

is introduced and tested. For example, in Figure 3 release paths for versions 2.0.x and 

2.1.x create two distinctive paths. The paths fork when version 2.1.0 was introduced in 

September 1996, and when a new developmental path was started. New releases of the 

stable path are released simultaneously with developmental releases, but usually only with 

minor bug fixes. Indeed, the last version of the stable path, 2.0.38, was released about 

three years after the developmental path 2.1 started. The developmental path 2.1, in turn, 

consisted of 132 versions before it became the next stable version 2.2., at the beginning of 

1999. 

One of the characteristics of open source software projects is that the system design 

evolves based on ongoing innovation and learning. One way to illustrate this ongoing 

innovation is to analyze the increasing complexity of Linux during its history. The 

structural complexity of the system is reflected in the number of relatively independent 

subsystems. In practice, the code for each subsystem is organized into its own 

subdirectory. An estimate of the number of subsystems can therefore be found by counting 

the subdirectories in the kernel distribution. Figure 4 shows the number of new 

subdirectories created within two-week time windows, as well as the number of 

subdirectories in use across time.7 Major peaks in the number of new directories indicate a 

major rewrite of the system. This happens when a new major version is released. On 

average, there were 1.6 new directories created each two weeks. In release 2.3.51, March 

2000, there were 333 subdirectories in use. 

                                                

7 The graph was produced by analyzing the file creation dates for 11 kernel releases, including 0.01 and 
2.3.51, and defining the directory creation date as the date the first file in the directory was created. A 
moving 14 -day time window was used, starting from the first file creation date found. The total number 
of files was about 20,000. The analysis was done using a set of Perl programs that processed the file lists 
of the various releases and counted the number of new directories within each time window. This rather 
labor-intensive process was used as some of the directories in the kernel archives had been recreated 
during the years, and therefore had lost their original creation dates. 
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Figure 4. New source code directories. 

Using a similar measure, it is also possible to estimate the intensity of “creative 

destruction” in Linux development. On a structural level, this can be viewed as the number 

of system components that become obsolete within a given time window. Using the 

directory structure as a proxy for this, we can count the number of directories that 

disappear within a given time window. This is shown in Figure 5. 
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Figure 5. Removed directories as a function of time. 

Already from the brief outline given above, it is easy to see that the Linux development 

model has led to continuing system development. Even within the kernel itself, the rate of 

technology creation seems to increase as the development proceeds. Although the system 

has gone through a large number of revisions, the rate of growth does not seem to slow 

down. 

Linux developer community 

Constant innovation creates major challenges for developing a coherent and maintainable 

system. When a number of people actively develop the same system, and thousands of 

end-users can freely report bugs they find and express their ideas for new functionality, 

there is an ongoing flow of suggestions for improvement. This easily leads to an 

increasingly complex system that becomes extremely difficult to understand and maintain. 

In the Linux development community, this phenomenon is known as “creeping featurism,” 

and it is one of the main concerns of the developers. Yet, it is also important that new 

innovations are incorporated into new releases without excessive delay. Without the 

possibility of new contributions to be integrated into the system, there would be little point 

in proposing and producing improvements. In practice, this inherent tension between the 
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need to incorporate new innovations and keep the system complexity manageable is a 

critical issue for open source development. A successful resolution of this issue requires 

effective social coordination and control. The resulting social structures and processes, 

therefore, reflect the requirements of successful system development. To the extent that 

Linux is a highly reliable and effective software system, one could then expect that its 

developer community implements effective social structures for technology development. 

Since version 1.0, March 1994, Linux kernel files have included a “credits” file that lists 

important contributors to the project. The most recent credits file for Linux contains the 

names of 328 developers.8 This is a good estimate of the number of people who have 

substantially and successfully contributed to the development of the core Linux system. 

The actual number of co-developers is, however, much higher. There are about 90,000 

users who have registered themselves as Linux users9, and a large proportion of these have 

programmed at least minor applications for Linux. These active developers are an 

important source of bug reports and bug fixes. Often the credit of such contributions is 

given only in the change logs and in source code comments. The “bazaar” described by 

Raymond, therefore, seems to consist of several hundreds of central members, and several 

thousands of more peripheral, but technically sophisticated users. 

One important aspect of this “bazaar” is that it relies heavily on Internet to get its work 

done. The Linux development model emerged simultaneously with the explosion of 

Internet use. In early 1992, it was still argued that the development model relied too much 

on Internet, therefore excluding people without Internet access (Tanenbaum, quoted in 

DiBona, Ockman, & Stone, 1999:245).  However, the rapid expansion of Internet use at 

the time when the Linux kernel was developed provided the developer community with 

new ways to distribute development work, a new distribution channel, and a global 

community of sophisticated users. 

                                                

8 ftp://ftp.funet.fi/pub/Linux/kernel; the CREDITS file can be found in the root directory of each release 

9 http://www.linux.org/info/index.html 
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The regional distribution of early Linux development work is depicted in Figure 6. The 

figure shows the number of people in different countries mentioned in the first credits file. 

To adjust for the different sizes of countries, the numbers in Figure 6 are given per million 

inhabitants. The figure shows that Linux development has been a geographically broadly 

distributed activity since the very beginning. 
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Figure 6. Location of active contributors, March 1994. 

The first credits file acknowledged 78 contributors coming from 12 different countries. In 

addition there were two contributors whose location was not possible to identify using the 

information in the file. The credits file for 2.3.51 release, March 2000, had contributors 

from 31 different identifiable countries. In absolute numbers, the U.S.A. was the biggest 

home base for contributors with 114 people. Figure 7 shows the current geographic 

distribution of people in the credits file. Luxembourg had one developer in the most recent 

credits file, but as the country has less than half a million inhabitants, it is omitted from 

Figure 7. 
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Figure 7. Geographical expansion of development activity. 

Linux is in many ways a self-organizing effort. There is no formal organization, although 

several non-profit and business organizations have become important components of the 

Linux development effort during the recent years. The Linux development effort is in 

practice organized around projects, communication procedures, communication and 

collaboration tools, and software modules that are constantly evolving. In many ways, the 

Linux development community resembles a community of practice (Lave & Wenger, 

1991; Brown & Duguid, 1991). Such a community is organized around central “gurus,” 

“old-timers,” and more peripheral novices who have been accepted as legitimate members 

of the community. In the case of Linux, the core community members consist of key 

contributors to the overall project. In contrast to the basic community of practice model, 

however, Linux development community has more than one center, as there are several 

important sub-projects. In recent years, the different main subsystems have been managed 

by a self-nominated group of maintainers. As a default, Linus Torvalds acts as the 

maintainer for those subsystems that have no explicitly defined maintainer. 
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Although Linux development is not formally organized, a key to the success of Linux is 

that the development is not random, however. The development of technology is based on 

a sophisticated system of social relations, values, expectations, and procedures. This 

system is in many ways quite different from conventional industrial product creation. 

Control and coordination in the Linux community 

Traditionally, organization theorists have argued that increasing complexity in division of 

labor leads to formal organizational structures (e.g., Mintzberg, 1979). In the case of 

Linux, this doesn’t seem to be the case. Although the Linux community has some 

structural similarity with the cellular organizational form (Miles, Snow, et al., 1997) and 

the hypertext organization (Nonaka & Takeuchi, 1995), existing organizational models do 

not very well describe the structure of Linux community. Instead, the Linux developer 

community resembles a dynamic meritocracy, where authority and control are tightly 

bound with the produced technological artifacts. In this sense it also differs from most 

network-based organizational and innovation models, which typically have focused on firm 

and industry level networks (e.g., Powell, Koput, & Smith-Doerr, 1996; Van de Ven, 

1993; Lynn, Aram, & Reddy, 1997). Indeed, the organizational structure could be 

characterized as a network of communities of practice, or as a fractal organization 

(Tuomi, 1999). 

Peripheral additions to the GNU/Linux system are not controlled by anyone. For example, 

anyone can develop a new application that uses the Linux kernel, and distribute it. As a 

result, there exists a large set of potential sub-projects competing for community 

development resources. As will be discussed below in more detail, the allocation of these 

resources is to a large extent based on management of community attention, which in turn 

relies on accumulation of reputation. Sometimes it is possible to develop a simple program 

for one’s own use, but in most cases interesting systems require that several developers 

become interested in developing and using them. Control, therefore, is indirectly based on 

capability to mobilize resources. Directly, it lies very much with the users and potential co-

developers. 
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As there is no formal organization in the Linux community, its coordination and control 

mechanisms can only be analyzed by observing those explicit and implicit procedures that 

the community relies on. In the Linux development community, social issues are often 

described as technical issues. When Linux developers discuss the way the system should 

be developed and how it should evolve, discussions often focus on code portability, 

maintainability, possible forking of code-base, programming interfaces, and code size and 

performance. These technical discussions are critical for the success of the collaborative 

effort. 

Implicitly, each technical choice implies specific procedures that need to be followed in the 

development work. Often the technical decisions are driven by the need to keep the 

collaborative development work going. Computer software is inherently flexible, and there 

is a very large set of possible ways to implement a specific system. Technical decisions, 

therefore, are to a large extent articulations of beliefs on the effective ways to organize 

development. In the course of the evolution of the system architecture, the learnings on 

problems and possibilities of collaborative development become implemented in the 

architecture of the technological artifact. Technical discussions on how things “work,” 

what a good design is, and how development should be done are therefore often 

reflections on social practices, externalized as specifications for technology. This is most 

obvious when developers discuss the maintainability of the code, “cleanness” of the 

interfaces, and the problem of “creeping featurism.” 

A contingency theoretic view would imply that in a successful development project, such 

as Linux, the structure of software becomes a mirror image of important aspects of the 

social structure that is needed for a successful system to emerge. Although social 

institutions are not directly mapped to the development architecture, of course, the 

architecture and ways of doing things have to be complementary for a project to be 

successful. For example, the control of specific software modules, coordination 

mechanisms, incentives, and goals have to be aligned for the overall effort to be 

successful. These, in turn, have to be embedded within a larger social context, which limits 

the arrangements within the Linux community. 
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The lack of formal organizational structure in Linux development has enabled flexible 

experimentation with the procedures and values that support effective development. As 

Linux development occurs in “internet time,” the speed of evolution is fast. The resulting 

social innovations, therefore, crystallize some of the learnings in organizing collaborative 

and geographically distributed technology development. 

Collaborative software development projects have inherent problems that create specific 

forms of division of labor, and related design traditions. A sociological description might 

view the emergent social structures in the Linux development community as solutions to 

underlying social tensions. Blumenberg 1985, for example, argued that social institutions 

grow around irreducible social contradictions and fundamental conflicts, somewhat as a 

pearl grows around an irritating grain of sand. A fundamental problem in the development 

of complex software is that small modifications in one part of code can have major 

implications for another part of the code. There is no natural decay in software, and 

therefore no universal dimension of distance or time. As Wiener (1975) noted long time 

ago, digital computers are unique among computational systems because digitalization 

makes computational machines noiseless, in the information processing sense. Modularity 

and “locality,” therefore, have to be created and maintained through social processes. 

In practice, interdependencies in pieces of parallely developed code create a need to 

coordinate design decisions. Often there are conflicting interests. For example, a minor 

modification in some part of the program code may require major rework from people 

who maintain other parts of the program. A generic way to reduce this problem is source 

code modularization. A well-designed program has modules whose design limits 

interactions between modules. If modularization is successful, one programmer can modify 

the source code of his or her module without requiring changes in other modules. In other 

words, a programmer can control the evolution of a specific piece of code, without 

creating problems for other programmers. 

In the case of Linux, modularization is based on social agreements, which are supported 

by commonly accepted development practices, and which are reflected in the overall 
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system design. Many of these social agreements are implicit, and community members 

have to learn them through socialization. Indeed, only after a novice programmer is able to 

display the mastery of the key rules, he or she is considered to be a full member of the 

community. To some extent these rules are also dynamic and they can change. 

Sometimes conflicts arise about the implementation and functionality of a specific program 

module. If two programmers create different versions of the module, and the module is a 

key component of the system, this leads to forking of the code base. In effect, the system 

evolves into two different and incompatible variations. This means, in practice, that the 

synergy in development is lost, and the developers have to choose one of the versions as 

the basis for their future work. According to Torvalds, such code forking occurred in the 

first attempt to port Linux to a non-Intel processor architecture. As a result, the kernel 

design was modified to accommodate new processor architectures in a way that did not 

risk forks in the code base (Torvalds, 1999:102). 

The design choices for modularization and interfaces are critical success factors in 

collaborative software development. It is possible to define modules so that development 

becomes extremely difficult. For example, if there is no simple mapping between the 

underlying hardware and the software, the implementation of new functionality may 

require changes in several modules. Similarly, a small modification in the user interface 

may require extensive reprogramming if the modularization is bad. The layered abstract 

architecture of Unix is one attempt to solve this problem. In practice, this leads to major 

challenges in finding the appropriate levels of system abstraction, which are then reflected 

in the structure of source code. The situation is made worse by the fact that programmers 

often want to by-pass some levels of the abstract system architecture, usually to improve 

performance. Often it means that abstract representations of the system only remotely 

resemble its concrete implementation. 

For example, Linux modules that support different networks should in theory be 

independent modules. In practice, there have been many interdependencies between the 

modules for different networks. Armstrong (1998) has used automatic architecture 



 21

extraction tools to analyze Linux, and noted that these interdependencies create a potential 

maintenance problem for the kernel. 

Although GNU/Linux development is open and has very little formal control, kernel 

development is socially very tightly controlled. It is in the very core of the Linux kernel, 

therefore, where the link between social and technical structures can most clearly be seen. 

Controlling the kernel 

The constant flow of improvements means that the Linux system is in a constant risk of 

losing its maintainability. In practice, balancing innovation and maintainability has led to 

tight control of some parts of the system. The control structures are very dynamic and 

continually reproduced in the ongoing communication within the developer community. 

As Linus Torvalds notes in one recent email:10 

If anybody thinks that being the maintainer equals being in 100% control, then I 

don't think they have understood the TRUE meaning of Open Source. Open 

source is about letting go of complete control. Accept the fact that other people 

are wonderful resources to fixing problems, and let them help you. 

To study the interplay between control and technology design, we need to describe the 

architecture of the Linux kernel. As was noted before, a GNU/Linux distribution consists 

of a large set of application programs, the basic Unix utility programs, several versions of 

the kernel for the different supported processor architectures, and a large number of 

drivers for different types of hardware. In practice, the abstract high-level system 

architecture shown in Figure 2 is therefore relatively close to the actual Linux 

implementation. On a more detailed level, abstract descriptions, however, start to deviate 

from the concrete implementation. The kernel, for example, does not have a well-defined 

boundary between the system call interface and the core kernel. This is partly because 

                                                

10 Summarized from email traffic in linux-kernel mailing list in Kernel Traffic #60, 27 Mar, 2000, 
http://kt.linuxcare.com/ 
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there are performance trade-offs, which sometimes make it practical to bypass some 

internal parts of the kernel. Partly it is simply because the evolution of Linux has led to 

interactions between the different parts of the system, and, as a consequence, the 

boundaries have become blurred. Also, in Linux the module called “kernel,” which 

architecturally most closely resembles the system call interface, implements some process 

management and memory management functions, as well as some error processing. The 

main components of the Linux kernel architecture can be represented as in Figure 8. 

kernel
(system call interface)

lib
(system call interface)

mem
(memory management)

arch
(processor architecture

dependent)

ipc
(inter-process

communication)

fs
(file system)

net

drivers
(hardware drivers)

 

Figure 8. Linux architecture (modified from Armstrong (1998)). 

The need to control the kernel was one of the topics in the famous debate between 

Andrew Tanenbaum and Linus Torvalds in 1992. Tanenbaum argued that it is critical for a 

successful operating system project that someone maintains tight control of the code, so 

that its complexity does not explode and that the core of the system does not fork: 

If Linus wants to keep control of the official version, and a group of eager beavers 
want to go off in a different direction, the same problem arises. I don’t think the 
copyright issue is really the problem. The problem is co-ordinating things. Projects 



 23

like GNU, MINIX, or LINUX only hold together if one person is in charge. 
During the 1970s, when structured programming was introduced, Harlan Mills 
pointed out that the programming team should be organized like a surgical team—
one surgeon and his or her assistants, not like a hog butchering team—give 
everybody an axe and let them chop away. Anyone who says you can have a lot of 
widely dispersed people hack away on a complicated piece of code and avoid total 
anarchy has never managed a software project. (quoted in DiBona, Ockman, & 
Stone, 1999:247) 

At that time, Linus emphatically argued that he would not control the system: 

This is the second time I’ve seen this “accusation” from ast (Andrew 
Tanenbaum)…Just so that nobody takes his guess for the full truth, here’s my 
standing on “keeping control”, in 2 words (three?): 

I won’t. 

The only control I’ve effectively been keeping on linux is that I know it better than 
anybody else, and I’ve made changes available to ftp-sites etc. Those have become 
effectively official releases, and I don’t expect this to change for some time: not 
because I feel I have some moral right to do it, but because I haven’t heard too 
many complaints, and it will be a couple of months before I expect to find people 
who have the same “feel” for what happens in the kernel. (quoted in DiBona, 
Ockman, & Stone, 1999:247) 

Almost seven years later, at the end of 1998, Torvalds argued that the development had 

undergone major improvement when a new model for the kernel development was taken 

into use with release 2.0. In the new kernel architecture, the original monolithic kernel was 

extended by introducing loadable kernel modules. These are mainly used to dynamically 

load device drivers according to the needs of the specific computer configuration. 

According to Torvalds, this improved modularity by creating a well-defined structure for 

writing modules: 

Programmers could work on different modules without risk of interference. I could 
keep control over what was written into the kernel proper. So once again 
managing people and managing code led to the same design decision. (Torvalds, 
1999:108) 

An indirect implication of loadable kernel modules is that performance critical hardware-

specific code can often be confined to a module. As a result, the core kernel becomes 

easily portable. For example, low-level interaction with hardware devices can be 
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programmed in separate device drivers that can be loaded if the specific device is present. 

Such device specific functionality, therefore, does not need to be implemented in the core 

kernel itself. The question, however, is not only about technical performance. As Torvalds 

notes: 

But Linux’s approach to portability has been good for the developer community 
surrounding Linux as well. The decisions that motivate portability also enable a 
large group to work simultaneously on part of Linux without the kernel getting 
beyond my control. The architecture generalizations on which Linux is based give 
me a frame of reference to check kernel changes against, and provide enough 
abstraction that I don’t have to keep completely separate forks of the code for 
separate architectures. So even though a large number of people work on Linux, 
the core kernel remains something I can keep track of. And the kernel modules 
provide an obvious way for programmers to work independently on parts of the 
system that really should be independent. (Torvalds, 1999:109-10) 

Control and innovation 

Comparing Torvalds’ early and later statements on controlling the system it is clear that 

both the challenges and the possibilities of the system have considerably evolved in a few 

years. In 1992, when there were only few people developing the system, there was no 

obvious need to restrict derivative works. Although Tanenbaum warned Linux developers 

about the problems of uncontrolled forking, at this time the developers were more 

interested in the possibility to easily modify and improve the system. Indeed, the system 

was perceived as a huge technical opportunity and there were no visible constraints that 

restricted its future evolution. In other words, it was seen as a platform that could easily 

adjust to the best technical ideas anyone could come up with. Due to its simple structure, 

open source, and constant improvements, it was able to effectively grab attention among 

programmers who wanted to show their capability, and who enjoyed the possibility of 

creating code that contributed to the collective effort. 

When the system has become more complex and there have been more active developers, 

the problem has increasingly been in balancing coordination, control, and local innovation. 

The key factors in this process seem to be modularization and implicit management of 

attention. Attention is allocated to a large extent based on centrality in the community, and 
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this, in turn, is based on reputation. Reputation within the community is, in turn, to a large 

extent based on producing working code that has relevance for the community, or solving 

important problems with existing code. 

Under these circumstances, reputation is a good predictor for future achievements. If 

someone has successfully coded Linux, he or she most probably knows many things about 

programming. A distributed system of social control seems to work effectively in this case, 

and the technical artifact and its developer community evolve in compatible ways. 

Although the skill-base and tools change, the open and collaborative environment makes it 

relatively easy to learn new techniques and renew competences. As a result, meritocracy 

has definite merit in Linux development. Innovation, however, is also closely related to the 

modularity and extensibility of the underlying technical system. The market of resource 

mobilization is possible in the Linux community only because the kernel architecture 

provides a relatively stable focal point around which dynamic sub-communities can 

emerge. 

Using the directory structure of the Linux kernel, it is possible to illustrate the evolution of 

the various kernel components. Such an analysis reveals that the growth in the system is 

quite heterogeneous. Innovation and development are strongly concentrated on some parts 

of the system, whereas other parts rarely change. The core kernel may be defined as those 

parts of the system that have stabilized. Figure 9 shows the evolution of some components 

of the core kernel. A typical pattern is that a period of relatively rapid change is followed 

by stabilization and lock-in. 
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Figure 9. Growth of some core kernel components. 

In most cases, changes in the core kernel would require extensive rewriting of other parts 

of the system that depend on given functionality in the core. Therefore such changes can 

happen only in limited ways. In practice, after there exists a substantial amount of code 

that depends on the core kernel, the core can only change its internal implementation or 

provide new functionality that is compatible with the old. Technically, it is not possible to 

constrain changes in such a way. In other words, the open source development model 

needs strong social controls to avoid the costs of lock-in. As Torvalds notes: 

The first very basic rule is to avoid interfaces. If someone wants to add something 

that involves a new system interface you need to be exceptionally careful. Once 

you give an interface to users they will start coding to it and once somebody starts 

coding to it you are stuck with it. (Torvalds, 1999:105) 

The internal implementation changes in the core kernel when bugs are corrected or when 

inefficient code is rewritten. New functionality, in turn, is introduced only when there are 
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extremely important reasons for it. The conservative policy for the extensions originates 

from the fear that the core kernel becomes difficult to maintain, or that new bugs are 

introduced into the core. By keeping the core kernel simple and stable, and by providing 

support for extensions in the kernel architecture, technical change can be directed to areas 

where it can be managed. The fundamental trade-off is, of course, that radical innovation 

in the core kernel becomes difficult, or impossible in practice. The interactions between 

software modules make the system evolution extremely path-dependent, and tight control 

of some parts of the system are required to keep other parts of the system open and 

extensible. 

As expected, in contrast to components shown in Figure 9, some other parts of the kernel 

grow very fast. Linux was originally developed for Intel 386 processor architecture, but 

since version 1.2.0 it has supported several alternative processor architectures. Linux can 

be extended to a new processor by porting its processor-dependent parts. The code for 

these different processor-dependent parts is organized into their own directories. Using 

such a modularization of source code, the code for different architectures becomes 

independent, and it is possible to add support for new processor architectures without 

interfering with other parts of the source code. In practice, this has led to a situation 

where several different teams of programmers have been able to develop the overall 

system in parallel. 

Similarly, the hardware specific drivers can be developed as independent modules. Indeed, 

most of Linux development in recent years has been related to new hardware components. 

The open source policy makes it easy for anyone to develop hardware-specific additions to 

the system, as long as the developer knows the internals of the hardware in question. 

Linux architecture is extensible also in areas that one would expect to be parts of the core 

kernel. For example, Linux supports a large selection of file systems. As long as existing 

file systems continue to work, it is possible to introduce a new file system without much 

risk of destroying system reliability. As Torvalds notes: 
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Without modularity I would have to check every file that changed, which would be 

a lot, to make sure nothing was changed that would effect anything else. With 

modularity, when someone sends me patches to do a new filesystem and I don’t 

necessarily trust the patches per se, I can still trust the fact that if nobody’s using 

this filesystem, it’s not going to impact anything else. (Torvalds, 1999:108) 

As a result, the evolution of Linux is very much concentrated on those parts of the system 

that can be developed independently. This can be seen by analyzing the rate of change in 

the source code size. The main extensible components of the kernel distribution are shown 

in Figure 10. Comparing the rates of change for core and extensible components of the 

kernel, one can see that the extensible components grow typically about two orders of 

magnitude faster than the core components. 
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Figure 10. Growth of architecture dependent and extensible components. 



 29

Quality control and Linus’s Law 

An important characteristic of the Linux community is the way it controls the quality of its 

production. This, indeed, is the key when we try to understand how a distributed group of 

self-managing developers are able to create a useful product. Product quality is a critical 

success factor for an operating system project, and it is exactly here where the Linux 

development model shows its strength. 

Almost all software has bugs, and in complex systems these bugs can emerge as a result of 

complex interactions between different program components. Large software systems are 

therefore difficult to develop. The more developers there are, the more difficult it becomes 

to control and understand all the possible interactions between software components. This 

is usually known as “Brooks’ Law.” In “The Mythical Man-Month”, Fred Brooks (1995) 

noted that adding programmers to a late software project makes it later. He argued that 

the complexity and communication costs of a project rise with the square of the number of 

developers, while work done only rises linearly. Raymond, however, observes that if 

Brooks’ Law were the whole picture, Linux would be impossible: 

Gerald Weinberg’s classic “The Psychology Of Computer Programming” supplied 
what, in hindsight, we can see as a vital correction to Brooks. In his discussion of 
“egoless programming”, Weinberg observed that in shops where developers are 
not territorial about their code, and encourage other people to look for bugs and 
potential improvements in it, improvement happens dramatically faster than 
elsewhere.  

Weinberg’s choice of terminology has perhaps prevented his analysis from gaining 
the acceptance it deserved—one has to smile at the thought of describing Internet 
hackers as “egoless”. But I think his argument looks more compelling today than 
ever. (Raymond, 1999:61-2) 

Quality control is quite a different process in the Linux developer community than it is in 

traditional product development. Openness means that members of the developer 

community are able to review the work of others’. An interesting effect of this is that 

quality control of the results is good. Whereas traditional software development models 

mainly used end-users are a source of reclamations and bug-reports, in the Linux model 

users become problem solvers, providing an enlarged set of problem solving resources. 



 30

The user-developers bring many different perspectives, approaches, and experiences into 

play. From some of these perspectives, a specific problem is easier than from others. When 

the developer population is large enough, there probably is someone to whom the problem 

is easy. Raymond formulates this principle as “Linus’s Law”: 

Given a large enough beta-tester and co-developer base, almost every problem 

will be characterized quickly and the fix is obvious to someone.  

Or, less formally, “Given enough eyeballs, all bugs are shallow.” (Raymond, 
1999:41) 

Raymond argues that this is the main difference underlying the cathedral-building and 

bazaar styles. Whereas development problems are tricky, insidious, and deep phenomena 

in the cathedral model, in the bazaar model one can assume that “they turn shallow pretty 

quick when exposed to a thousand eager co-developers pounding on every single new 

release.” 

And that’s it. That's enough. If ”Linus’s Law” is false, then any system as complex 
as the Linux kernel, being hacked over by as many hands as the Linux kernel, 
should at some point have collapsed under the weight of unforeseen bad 
interactions and undiscovered “deep” bugs. If it’s true, on the other hand, it is 
sufficient to explain Linux’s relative lack of bugginess and its continuous uptimes 
spanning months or even years. (Raymond, 1999:42) 

Raymond’s formulation of Linus’s Law therefore complements Von Hippel’s (1988) 

argument that users are important sources of product innovation. Indeed, Linus’s Law 

shows that there are two essentially different reasons why users are important for 

innovation. As Von Hippel noted, users can modify and adapt innovations, and thereby 

add value to them. As Raymond notes, however, users can also play an important role in 

quality control. 

This second role is not a trivial one. Indeed, it is a very fundamental phenomenon which 

has major implications for the theory of innovations also more generally. Users 

appropriate innovations in idiosyncratic contexts. These contexts differ both cognitively 

and situationally. When source code is available, software bugs can be characterized and 

debugged using these multiple perspectives, each of which rests on large stocks of 
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unarticulated knowing. In open source environment, therefore, software bugs can become 

opportunities for innovative contribution, and not just sources of frustration. 

In Linux development, the situation consists in part of the complex system of hardware 

and software that interacts with the operating system. To limit this complexity, developers, 

for example, use old and tested compilers to be able to separate compiler bugs from the 

kernel bugs. The Linux kernel mailing list FAQ answers the question whether different 

compilers can be used to compile the kernel in the following way: 

Sure, it’s your kernel. But if it doesn’t work, you get to fix it. Seriously now, there 

is really no point in compiling a production kernel with an experimental compiler. 

Production kernels should only be compiled with gcc 2.7.2.x, preferably 2.7.2.3. 

Newer kernels are known to break the 2.0 series kernels, known symptoms of this 

breakage are hwclock and the X server seg.faulting…Regarding 2.1 kernels, they 

usually compile fine with other compiler versions, but do NOT complain the list if 

you are not using 2.7.2. Linux developers have enough work tracking kernel bugs, 

to also be swamped with compiler related bugs.11 

Often it is impossible to predict the interactions between different system components, and 

the only way to learn about them is to use the system in different concrete settings. 

Sometimes the bugs are in the hardware, and there is no way they can be corrected by 

studying the software. For example, Intel Pentium processors have bugs that need to be 

corrected by workarounds. In some cases, hardware bugs can be so unpredictable that 

there is no workaround. The Linux kernel mailing list FAQ lists some of the known 

processor bugs and, for example, tells that the AMD K6 processor has unpredictable 

hardware errors: 

The AMD K6 “sig11” bug, affects only a few K6 revisions. Was diagnosed by 

Benoit Poulot-Cazajous. There is no workaround, but you can get your processor 

                                                

11 http://www.tux.org/lkml/ 
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exchanged by contacting AMD. 2.2.x kernels will detect buggy K6 processors and 

report the problem in the kernel boot message. Recently, a new K6 bug has been 

reported on the linux-kernel list. Benoit is checking into it. 

The importance of testing new software code is strongly emphasized, and “good ideas” 

rarely get support without working code that implements the idea. The MAINTAINERS 

file12 that lists people responsible for the various kernel modules also gives guidelines for 

submitting changes to the kernel: 

1. Always test your changes, however small, on at least 4 or 5 people, preferably 

many more. 

2. Try to release a few ALPHA test versions to the net. Announce them onto the 

kernel channel and await results. This is especially important for new device 

drivers, because often that’s the only way you will find things like the fact that 

version 3 firmware needs a magic fix you didn’t know about, or some clown 

changed the chips on a board and not its name. (Don’t laugh! Look at the SMC 

etherpower for that.) 

3. Make sure your changes compile correctly in multiple configurations. In particular 

check that changes work both as a module and built into the kernel. 

4. When you are happy with a change make it generally available for testing and 

await feedback. 

The outline of the bug detection and removal process is straightforward. For a software 

bug to be removed from the system, first someone has to realize that there is a bug. After 

a bug has been detected, it has to be characterized, preferably by describing repeatable 

conditions under which the bug can be observed. This phase consists of diagnosing the 

exact nature of the bug. When the bug has been understood, it can be solved. This phase 

consists of writing new code that corrects the bug, and testing the new code to verify that 

                                                

12 MAINTAINERS file can be found from the root directory of new releases of the Linux kernel, for 
example, from http://www.kernel.org/pub/linux/kernel/ 
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the bug has been removed, and that no new bugs have been introduced in the process. 

When a tested solution is available, it is distributed to other developers. Finally, if the bug 

is important enough and the new code does not seem to create excessive problems, the 

bug fix is eventually integrated into a new kernel release. This process is depicted in 

Figure 11. 

test

detect

characterize

remove

distribute

integrate

 

Figure 11. The basic bug removal cycle. 

In actual practice, this rather straightforward process is more complicated. It relies on 

tools, social practices, and knowledge resources that implement the abstract bug removal 

procedure. Moreover, the developers apply the various resources in a creative way, 

improvising according to the needs of the situation. The appropriate way to improvise 

depends on the audience: if the community of developers understands that a specific way 

of breaking the standard procedure is justified, rules can be broken. The behavioral 

standards are usually given as expectations and suggestions, and there are only few 

explicit procedures for doing things. Usually such explicit procedures do not result from 

explicit specification of social processes; instead, they arise from the design of specific 

tools used in the process. In other words, some aspects of the process are hard-wired into 

the functionality of the tools. 
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Some widely used resources and tools for Linux kernel bug management are shown in 

Table 1. Some of the resources, such as the JitterBug bug reporting and patch distribution 

system, are both platforms for collaboration and informational resources. Some 

informational resources are meta-level resources that describe procedures used in bug 

processing. An important meta-level resource is, for example, the linux-kernel mailing list 

FAQ document that lists frequently asked questions and gives answers and links to further 

information on them. Some tools interface the object of development, i.e., source code, to 

the development community. An example of such a tool is the CVS version control 

system, and the CVS vger –server that maintains the different patches and versions of the 

kernel in hierarchical trees, and which provides a shared repository of source code to all 

developers. Many of the tools listed in the table are well-known generic and Unix-tools.13 

Although their existence is often taken for granted, in practice the bug removal procedures 

critically depend on the tools and their evolution. 

Although Table 1 shows the main tools currently used in the bug removal process, one 

should note that many of these tools have emerged during the evolution of the kernel. 

Some of the tools and resources explicitly address problems that the success of the kernel 

development has created. For example, the Kernel Traffic list14 produces an edited 

summary of the large volume of mailings in the linux-kernel mailing list. The linux-kernel 

mailing list FAQ, in turn, documents the common questions that novice developers have, 

as a way to keep such relatively low-priority questions crowding the linux-kernel list. 

                                                

13 man is a program for reading manual pages. gcc is the GNU c-compiler. make is a program that 
manages the compilation process. gdb is the GNU debugger. diff is a program that creates difference files 
from two source code files, and which updates modified files using differences. This is used to distribute 
patches that update files with modifications.  gzip is used to compress files, and tar is used to package 
several files into one for easier distribution. Linux developers also use generic tools such as IRC, ftp, 
email, and mailing lists. Other tools and resources are systems that are more specific to Linux 
development.  ksymoops maintains a list of symbols used in error messages. Kernel Traffic is an edited 
weekly summary of the mailings in the linux-kernel mailing list. LDP is Linux Documentation Project, 
which maintains a set of guidelines and documents for Linux developers. JitterBug is system that 
maintains information of known bugs and patches. CVS is a version control system that integrates with a 
shared CVS server called vger. 

14 http://kt.linuxcare.com/ 
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Similarly, the mailings in the linux-kernel list are archived, so that they can be searched 

when someone needs to know whether something is known about a potential bug. In that 

way the mailing list archives provide a simple but effective form of community memory. 

processing phase   information resource tool community 
resource 

detect compiled code 
documentation 

man LDP 

d 
e 
b 
u 
g 
g 
i 
n 
g 

characterize source code 
linux-kernel list FAQ 
JitterBug 
oops-tracing.txt 
Kernel Traffic 
LDP 
project-specific sites 
linux-kernel archives 
README files 
log files 
bug reporting form 

editor 
gcc 
make 
gdb 
ksymoops 
IRC 
computer configuration 
 

linux-kernel list 
JitterBug 
personal email 
IRC channels 
kernel-newsflash 
LDP 
project-specific lists 
 

 remove source code editor 
gcc 
make 

 

  test patch 
MAINTAINERS file 

diff 
gcc 
make 
editor 
ftp 

personal email 
linux-kernel list 

distribute patch 
MAINTAINERS file 

gzip 
tar 
email 
ftp 

linux-kernel list 
JitterBug 

integrate patch 
release 
 

CVS 
vger 
package managers 
 

Maintainers 
vger 

Table 1. Kernel bug management resources. 

Already a superficial analysis of the tools and resources used in the bug removal process 

reveals that a complex socio-technical system underlies this apparently simple process. 

Quality control in the Linux kernel, therefore, is not only about finding bugs and 

correcting them. It is also very much about the complex and continuously evolving system 

that makes the detection, characterization, and removing bugs possible in the first place. 
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Moreover, the bug removal process is operating in a context where source code patches 

can be distributed and integrated into new kernel releases. 

Tools and resources therefore mediate the relations between developers, developer 

community, and the technical object that is developed. The overall bug removal system 

can then be represented in a simplified conceptual way as in Figure 12. Whereas Raymond 

emphasizes the cognitive capabilities of co-developers, he forgets the role of mediating 

technologies. Sociocultural analysis (e.g., Wertsch, 1998; Leont'ev, 1978; Engeström, 

1987; Cole, 1996) would highlight the fact that cognition is also very much dependent on 

the tools and resources that are available for the developers. Implicitly, the guidelines for 

kernel bug removal note this when they insist that new patches need to be tested in 

different hardware configurations. Linus’s law could then be augmented by noting that it is 

the combination of eyeballs and other resources that makes even the most insidious bugs 

shallow. 

tools /
resources

tools /
resources

developer

tools /
resources

object

community
 

Figure 12. Mediated interactions in the bug removal process. 

Quality control in innovative and continuously evolving projects is essentially about 

learning. Whereas the traditional models of learning in product development focused on 

decreasing errors in a given product design, in the case of Linux learning is also creative. 
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Theoretical models of innovative learning generally claim that learning starts when a 

problem arises, and innovative solutions are generated in the process of defining ways to 

overcome the practical problem at hand (e.g., Dewey, 1991; Schon, 1963; Engeström, 

1987). The Linux development model is compatible with such theories of innovative 

learning. In this sense, it is also different from the conventionally used product 

development practices (c.f. Griffin, 1997; Mahajan & Wind, 1992), which rarely consider 

the microstructure of learning. The Linux model, however, does highlight some 

characteristics of successful product development that have been discussed within the 

disciplined problem solving literature on product innovation (Brown & Eisenhardt, 1995). 

Within this literature, the importance of exploratory learning, non-financial goals, 

continuous problem solving, and diversity of problem solving resources have been often 

noted. 

Developer incentives and resource allocation 

Linus’s Law and the compatibility of social and technical structures may explain why 

community-based technology development can lead to high quality results. Theoretically, 

Linus’s Law means that each contributor can contribute where his or her impact is 

greatest. In this sense, the Linux development community implements a market where 

cognitive resources are effectively allocated. 

The existence of such allocation mechanisms do not, however, explain why the product 

emerges. In the case of a software project, some development may occur simply because 

debugging, coding, and solving technical problems can be rewarding as such. This, indeed, 

is an important driver for development. Developers often describe the joy of hacking as 

their primary motive (e.g., Raymond, 1999). 

To be able to make relevant contributions to the project, one has to skillfully use tools and 

concepts, and do something that no one has ever done before. If one succeeds in creating 

a new piece of software that is taken into use in the community, there is clear evidence of 

success and a socially validated proof of mastery. Indeed, software projects provide 
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unlimited opportunities for testing one’s skills and creating new grounds for mastery. In 

this sense, one may regard “the joy of hacking” as something highly non-trivial. Instead, it 

can be seen as a prototypical driver for technological progress. As Csikszentmihalyi 

(1990) has shown, people are most happy when they are performing on the edge of their 

competences. Software is special simply because the developers live in a world of their 

own creation (Weizenbaum, 1984). In such a world, each new advance and border-

crossing moves the boundaries further, expanding the domain where new achievements 

can be realized. In this context, Linux, therefore, is not just a operating system kernel, but 

an interesting metaphor of modern technological culture. 

Such socio-cognitive explanations are important parts of the whole picture when we try to 

understand the drivers of technological change. As such, however, they cannot explain the 

fact that a technological system evolves as a coherent system. 

Raymond has proposed that the dynamic of Linux development can be understood by 

noting that the ownership rights that underlie the development are essentially similar to 

those that underlie the Anglo-American land tenure (Raymond, 1999).15 In this Lockean 

theory of property rights, ownership can be gained in three different ways. First, in frontier 

areas that have never had an owner, one can acquire ownership by homesteading: by 

mixing one’s labor with the unowned land, fencing it, and defending one’s title. Second, in 

an area where ownership already exists, one can acquire ownership through the transfer of 

the title. In theory, at least, such chain of title goes back to the original homesteading. 

Third, property that has been abandoned can be claimed by adverse possession. This 

happens in a similar way as the original homesteading: one moves in, improves the 

property, and defends the title as if homesteading (Raymond, 1999:93). Similarly, in the 

space of potential technological developments of the Linux system, developers can gain 

ownership rights for specific sub-projects. 

                                                

15 Raymond discusses the property rights in his article Homesteading the noosphere. This is included in 
(Raymond, 1999), and also available at http://www.tuxedo.org/~esr/writings/ 
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These informal ownership rights are important because they make exchange possible. 

According to Raymond, the exchanges that underlie the success of Linux, however, are 

not conventional economic transactions. Instead, he suggests that the system of social 

exchanges can be understood as a gift culture (Raymond, 1999:97). The developers give 

the results of their work as gifts to the community, and the mutual exchange of gifts leads 

to a technically highly advanced system with a very high quality. By giving gifts, the 

developers are also able to build reputation. Good reputation among one’s peers is a 

source of reward in itself. Reputation, in turn, makes it easier to mobilize community 

resources. In some cases, good reputation within the community may spill over to another 

areas the society, and earn a higher status there. 

In this sense, the Linux development community is similar to academic disciplines. As 

Raymond notes, one peculiarity of such communities is that only the members of the 

community can appreciate the quality of gifts. Indeed, the value of a gift is what others can 

make out of it. 

There is, however, more than one way to run a gift culture. According to Raymond, two 

sides of gift culture are represented within the software development community by 

crackers, who try to gain reputation by breaking computer security, and by benevolent 

hackers, who gain reputation by sharing useful software in source code (Raymond, 

1999:100). The cracker culture is a tightly closed one, and protects its secrets, whereas 

the hacker culture is based on transparency and openness. This has obvious implications 

for the way competence, knowledge, and technological artifacts develop. Openness means 

that results and techniques can accumulate, as it is relatively easy to learn from others’ 

work and add on it. There is a very strong expectation within the community that 

developers should develop their systems in ways that make is possible and easy for others 

to improve on them (e.g., DiBona, Ockman, & Stone, 1999:221-51). This expectation is 

reflected, for example, in the Open Source Definition16, which forbids deliberately 

                                                

16 http://www.opensource.org/osd.html 
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obfuscating source code, and which requires that source code be distributed in a format 

that a typical programmer would use to modify the program. 

Raymond argues that Linux development works well because reputation is mainly 

associated with software modules. Although, according to Raymond, developers are 

driven by ego-satisfaction there are strong taboos on claiming personal credit. Reputation 

is made objective by associating it with the produced technical artifacts. Although hackers 

relatively freely flame each other over ideological and personal differences, it is rare that 

they would publicly attack someone else’s technical competences. Instead of criticizing 

each other, they criticize the software. 

Bug-hunting and criticism is always project-labeled, not person-labeled. 
Furthermore, past bugs are not automatically held against a developer; the fact that 
a bug has been fixed is generally considered more important that the fact that one 
used to be there. (Raymond, 1999:110) 

Raymond also notes that the hacker culture consciously distrusts and despises egotism: 

…self-promotion tends to be mercilessly criticized, even when the community 
might appear to have something to gain from it. So much so, in fact, that the 
culture’s ‘big men’ and tribal elders are required to talk softly and humorously 
depreciate themselves at every turn in order to maintain their status. (Raymond, 
1999:107) 

In Raymond’s terms, reputation is very much “project-based.” His interpretation is that 

most hackers, as members of the cultural matrix, learn that desiring ego satisfaction is bad. 

However, he also notes that the rejection of self-interest in the hacker community is so 

intense that it probably plays some other valuable function. 

Raymond proposes two explanations for the taboos on posturing and personal attacks on 

technical competences. First, when results are judged by their merit, the community 

competence base increases rapidly. The taboo against ego-driven posturing therefore 

increases productivity. More importantly, however, when personal status is discounted, 

the community information on system quality closely reflects the quality of the system, and 

does not become polluted by personal reputations of the developers. 
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Implicitly Raymond’s account on the reputation mechanisms, however, assumes that there 

are two systems of reputation operating at the same time. The other one drives the 

developers as seekers of ego-satisfaction, whereas the other describes the quality of the 

collectively produced artifact. 

As in any social system, reputation, authority, and legitimation are products of history, and 

all abstract definitions of them fail in a closer study. Reputation is defined within the 

community in question, and the criteria it uses in managing reputation change as the 

community evolves. The only way to learn the rules of reputation building is to become 

engaged in the community discourse. Breaking the rules, in turn, can lead to 

excommunication. 

A recent email exchange in the linux-kernel mailing list gives an example of this process. 

The weekly Kernel Traffic linux-kernel mailing list summary called this episode “Tulip 

driver developer flame war.” There were 71 mailings around the topic between 13-20 

March, 2000. The main issue was the style of development by Donald Becker, one of the 

people mentioned in the credits file. The Kernel Traffic editors summarized some of the 

discussion:17 

In the course of argument, Donald Becker said to Jeff Garzik, "you didn't 

understand the task you were taking on when you decided to take over maintaining 

the Ethernet drivers. It took years to write the driver set -- it's something you can 

just pick up in a few months. And expecting me to now fix or maintain your 

hacked up code branch is just completely unreasonable." Jeff replied with venom:  

No one expects anything from you and has not for a long time. If you 
wanted to actually WORK on the drivers, rather than just complain, then 
I'm sure many people including myself would find that work very valuable. 
… 

                                                

17 This is an abridged version of the summary in Kernel Traffic #60, 27 Mar, 2000, 
http://kt.linuxcare.com/ 
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Elsewhere, Jeff went on, "Donald, I, and others all seem to agree that having his 

drivers and the kernel drivers diverge is a poor situation. However, while Donald 

continues closed source development with periodic code drops, and does not work 

with other kernel developers when creating infrastructure, I do not see a resolution 

to the situation any time soon." David Ford replied angrily, "Please explain how his 

code development is closed source? This is totally BS and you know it. All the 

code is available, all the list discussion is available, and patches and requests are 

accepted all the time. Quit it. His development is quite open …" Linus Torvalds 

replied:  

David, pipe down.  

You seem to like the approach Donald has taken. But take it from me, it 
DOES NOT WORK.  

The problem is that maintaining the drivers in their own small universe 
means that only those people who follow the driver development will ever 
even test them. … 

I fixed the tulip driver at least twice to work with the media detection, and 
sent Donald email about what I had done and why … I don't know if my 
fixes ever actually made it into Donald’s version, because after the second 
time I just stopped bothering trying to re-fix the same thing, and I never 
updated his driver again.  

In contrast, what Jeff and others have done have been of the type where 
immediately when a fix is made, it is released. Which means that if there are 
problems with it, people who follow new kernel releases will know. 
Immediately. Not in a few months time when the next "driver release" 
happens.  

This is what Jeff means with "closed source". Yes, the sources are there. 
Yes, they get released every once in a while. But Donald doesn't let people 
_participate_. He thinks he is the only one who should actually touch the 
driver, and then he gets very upset when things change and others fix up 
"his" drivers to take into account the fact that the interfaces changed. … 

Jeff also replied to David:  
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Donald's development is not open AT ALL. … He disappears for many 
months, creates a design without interfacing with kernel developers, and 
then appears again with a code drop.  

It is classic cathedral style of development. Read Eric Raymond's paper on 
why the bazaar method is far, far superior. … 

Donald replied to Jeff:  

A quick search of the two very active Tulip mailing lists reveals that you 
have contributed nothing until this year. Apparently you were not even a 
subscriber until then, and know nothing about the very open way 
development has been done. Yet you willing throw around pejorative 
phrases like "cathedral style" -- a hot button in this community.  

For those not interested what superficially appears to be a kernel power 
grab, there are issues underlying all of what appears to be a personal 
conflict.  

The Kernel Traffic summarized in more detail Donald’s arguement that the underlying 

questions are about the stability of kernel source code interfaces, testing the drivers in the 

context of continuously changing kernel releases, and the large and frequent kernel 

patches that make life difficult for driver developers. Donald further stated that the earlier 

interfaces were better than the more recent ones, and questioned the viability of the 

monolithic, single-point kernel source tree. Linus Torvalds replied: 

You're basically the only one thinking so.  

The fairly recent changes in 2.3.x (the so-called "softnet" changes) are just 
incredibly more readable and robust than the old crap was that I don't see 
your point at ALL.  

Just about every single network driver out there was SERIOUSLY broken 
… I know, I had fixed many of them. The games the drives played …were 
just incredibly baroque, and had absolutely NOTHING to do with "clean".  

All of that crap is gone, and it was much overdue. … 

The Kernel Traffic summary further recorded that Donald was not any more considered to 
be the owner of the network drivers that he had earlier developed. First Donald lamented 
on the difficult situation he is because he doesn’t have sufficient control over the 
development. Then Linus gave his assessment of the situation. The Kernel Traffic 
summarized: 
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Elsewhere in an entirely different subthread, Donald argued:  

I'm in the increasingly untenable position of being expected to maintain 
drivers for the current and older kernels, but not having any influence over 
the new development exactly because of that backwards compatibility. It's 
no fun being responsible for just the old versions, especially after I did 
years of unpaid development work.  

There were many interface changes added incrementally in the 2.3 kernels. 
Some were added without consideration of, or even in opposition to, cross-
version compatibility. And few of those interface changes were designed, 
as opposed to just hacked in. When I proposed an new PCI detection 
interface I wrote a skeleton driver, converted several of my drivers, 
demonstrated that it worked with several hardware classes and wrote a 
usage guide. But the few day hack was added because the patches were 
incremental (even if misdesigned and broken).  

Linus replied:  

Donald, that's not true, and you know it.  

Neither I nor anybody else has expected you to maintain the drivers for 
quite a long time now - you just didn't seem to have the interest, and a lot 
of people have acknowledged that. That is why there ARE new maintainers 
for things like tulip and eepro100, whether you like it or not.  

You did not lose influence of the drivers because you want to maintain 
backwards compatibility. You lost influence over the drivers simply 
because you never bothered to send in your changes. Don't start blaming 
anybody else.  

As the outline of the driver developer flame war shows, the open source model has 

conflicts, and reputation and authority can be gained and lost. As the comments of Linus 

Torvalds reveal, the breaking of expectations can lead to neglect of contributions, thus 

effectively destroying the possibilities to gain reputation within the community. When the 

reputation has decreased enough, it becomes easy for someone to start parallel 

development. Eventually this can lead to explicit transfer of “ownership” rights. 

The question is, however, also about the locus of control. Donald, as a driver developer, 

prefers that the kernel stays stable so that he can more easily develop his software. Linus, 

however, indicates that in the Linux community, the kernel is the central artifact, and 
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driver developers should adjust to the requirements of kernel development. Donald’s 

position is therefore rather similar in relation to the kernel as kernel developers’ position 

to the GNU c-compiler. As was noted above, the kernel developers argue that the 

compiler version needs to be held constant to effectively debug problems in the new kernel 

releases. By following such discussions, novice developers can learn how the open source 

development is interpreted in practice, and what are the taboos that should not be broken. 

As can be seen from the example above, the open source model is not restricted only to 

the software code; instead, it implies a code of conduct, which is supported by a 

socialization process that also occurs in the open source mode. The negotiation of social 

practices and the development of reputation can be observed by the global community in 

real-time. 

Rules and regulations 

As was noted above, procedures that underlie Linux development, are often learned when 

novice developers become socialized into the community. Many of the procedures and 

practices are also embedded into the functionality of the tools that support the 

development. There exists, however, also important explicit standards and agreements that 

are key components in the development system. On a technical level, one such standard is 

the ISO Posix interface standard, which defines the way application programs can use the 

kernel functions. The licensing policy that defines the open source model is a central social 

innovation that underlies Linux. Indeed, a lot of social order is encoded and embedded 

into the licenses and documents that describe different licensing alternatives. 

There exist several variations of commonly used open source license policies, some of 

which are more restrictive than others. In a clear contrast to the typical use of copyright 

licenses, which restrict the ways the copyrighted work can be used, the main goal of the 

free software licenses is to guarantee the ongoing re-use and development of software. 

In commercial software, the license terms are designed to protect the copyright. 
They’re a way of granting a few rights to users while reserving as much legal 
territory is possible for the owner (the copyright holder). The copyright holder is 
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very important, and the license logic so restrictive that the exact technicalities of 
the license terms are usually unimportant…In free software, the situation is usually 
the exact opposite; the copyright exists to protect the license. The only rights the 
copyright holder always keeps are to enforce the license and to change the license 
terms of future versions. Otherwise, only a few rights are reserved and most 
choices pass to the user. In particular, the copyright holder cannot change the 
terms on a copy you already have. Therefore, in free software the copyright holder 
is almost irrelevant—but the license terms are very important.18 

Free software licenses guarantee various rights to use, modify, distribute, and distribute 

modified code. According to the Debian Free Software Guidelines, and the Open Source 

Definition that has been derived from it, there are several requirements that a software 

component must meet.19 First, the license must guarantee that the code may be freely 

distributed without royalties. Second, the source code must be easily available, and the 

license must not restrict the distribution of the source code. Third, the license must allow 

distribution of modifications and derived works under the same terms as the original code. 

These are the main characteristics of open source software. In addition, to comply with 

the Debian Guidelines and Open Source Definition, the license may restrict distribution of 

modified source code only if it allows distribution of “patch files” that can modify the 

original code at the compile time. This is to simultaneously guarantee that the original 

programmer can maintain the integrity of his or her code, and that subsequent 

modifications are still possible by adding new “patches.” In addition, the license must not 

discriminate against any persons or groups, or against any uses, including commercial use. 

The license must also apply to all to whom the program is distributed, without the need to 

write separate license agreements. Further, the license must not require that the program 

be used as a part of a specified software distribution. To avoid contamination of licenses, 

for example by requiring that the program be distributed only together with other 

programs that have similar licenses, the license must not place restrictions on other 

programs. 

                                                

18 “Free software licensing alternatives.” http://metalab.unc.edu/pub/Linux/LICENSES/theory.html 

19 “A social contract.” http://www.debian.org/social_contract.html 
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The least restrictive form of license is public domain, which puts no restrictions on the use 

or distribution of the original code. It can be freely copied, used, and modified for any 

purpose. If a public domain program is available as source code, it adheres to the Open 

Source Definition. A rough estimate of the use of public domain licenses is that in mid-

1997 about 3 per cent of about 2600 software packages and documents on the Sunsite 

server were defined as public domain sources.20 Public domain licenses are therefore not 

very common within the open source community. 

The least restrictive commonly used license is the MIT or X consortium license, which 

requires only that the original copyright and license terms are included in the distribution. 

Shareware programs often use this type of license, although they may also request a 

donation from users who find the program useful. A slightly more restrictive license is the 

BSD-license, which requires that all documentation and advertisements acknowledge the 

original copyright holder. Freely Redistributable Software, in turn, has a FRS license, 

which requires that software can be freely copied, used, and locally modified. It must also 

grant the right to distribute modified binaries, although it can put some restrictions on the 

ways the modified source code can be distributed. To be “open source,” FRS restrictions 

have to adhere to the Open Source Definition, however. 

The most widely used free-software license is the GNU General Public License, or GPL. 

This is the license under which the core Linux system is distributed. It allows free copy, 

use, and modification. Modified source code can be redistributed if the modified source 

code shows a “prominent notice” of the modification. There is also a requirement that an 

interactive GPL program displays a start-up notice that shows it is a GPL program. More 

interestingly, however, the GPL license also requires that if a program contains 

components that are licensed under GPL, all the components must have a GPL.21 This last 

                                                

20 http://metalab.unc.edu/pub/Linux/LICENSES/theory.html 

21 GPL was originally defined by the Free Software Foundation, with the explicit aim to promote non-
proprietary software. GPL proponents argue that proprietary software limits innovation, and that fair use 
of software should be allowed in the same way as fair use of scientific results. Richard Stallman (1999), 
the founder of Free Software Foundation, has noted that the recent open source movement has to a large 
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requirement of GPL has no simple interpretation in practice (Perens, 1999). To enable 

commercial programs to be developed for the Linux platform, the license in Linux 

explicitly declares that the use of the system is not considered to generate a derivative 

work. This means that commercial and proprietary programs can use Linux even when 

they don’t want to use GPL. The original idea in GPL was that it shouldn’t be possible to 

change open source software proprietary by adding to it some proprietary components 

(Stallman, 1999). 

The license, although important, is only part of the story, however. There are several 

explicit and implicit expectations that define appropriate behavior within the open source 

community. For example, the Debian GNU/Linux community has defined a “social 

contract” that declares its commitments to keeping the programs free software, 

transparency in handling software bugs, and support for users who develop commercial 

and restricted software based on the free software developed by the community. 

Moreover, the rights to distribute key components of programs are tightly controlled by 

informal social mechanisms. A key factor in open source development is, however, the 

fact that formal contracts are intended to promote development, not to restrict it.22 

Property rights are used here to enable symbiotic development, instead of competition. 

In the course of time, commercial interests have become increasingly important in the 

Linux community. In the beginning, Linux development was closely aligned with the free 

software movement. Linux development was explicitly defined as a non-commercial 

                                                                                                                                            

extent neglected the ethical implications of software licensing, and focused on a short-sighted way to the 
productivity aspects of the open source model. 

22 Open source projects therefore also remind us that there are intellectual properties for which 
appropriation of returns on investment is not a major issue. It is also interesting to note that in the historic 
controversies on patent rights (c.f., Machlup & Penrose, 1950) the proponents of free market argued that 
patent rights may slow down development as they distort markets and do not necessarily allocate returns 
to those who contributed to the invention. Both free market advocates and proponents of patent 
monopolies, however, missed the possibility that technological development can result from giving away 
monopolies. 



 49

project. In 1992 Torvalds noted that the only exception for the free use of the code was 

the restriction that someone creates a commercial product out of it: 

The only thing the copyright forbids (and I feel this is eminently reasonable) is that 
other people start making money off it, and don’t make source available etc…This 
may not be a question of logic, but I’d feel very bad if someone could just sell my 
work for money, when I made it available expressly so that people could play 
around with a personal project. I think most people see my point. (quoted in 
DiBona, Ockman, & Stone, 1999:248) 

More recently, commercial organizations have become important actors in the Linux 

development system. This has created tensions and continuing discussions on the way 

open source licensing can be applied in practice (e.g. Perens, 1999). Raymond argues that 

the open source definition is a major improvement to the original GNU license policy, as it 

explicitly allows commercial software developers to join the Linux development 

community. This evolution of licensing policy can be viewed as one example of the ways 

in which the socio-technical system changes its social expectations in a response to the 

increasing variety of actors in the developer community. 

When the institutions of licensing are viewed as social innovations, it is possible to see that 

also social innovations can be a source of path dependence in socio-technical evolution. 

When the Open Source Definition is used as a guideline for licensing, it becomes very 

difficult to return to the closed source mode. Indeed, this was exactly the intention of the 

Free Software Foundation when it designed the GNU license, with the aim of 

guaranteeing that the results of technical work can accumulate. The Open Source 

Definition, with its less contagious licensing policy, however, makes it possible to 

incrementally develop closed extensions to the Linux system. In practice, this may be 

difficult as most developers rely on the collective resources of the community, and unfair 

free-riding easily leads to social exclusion. The transparency of the open source 

development model also means that it is difficult to hide such attempts of free-riding. 
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Why Linux works: Linux as modern economy 

Torvalds has frequently noted that his approach to design is pragmatic. The pragmatic 

approach has, for example, meant that he has mainly been interested in the portability of 

the system across existing computer architectures, and theoretical designs that were 

supposed to support portability have been of secondary importance. A somewhat 

surprising result is that this pragmatic approach to portability actually has led to easily 

portable systems. According to Torvalds the main idea was to design Linux so that it 

operates on “sane” computer architectures (Torvalds, 1999:104-5). Instead of abstracting 

operating system principles from theoretical research on operating systems, Linux has 

implicitly abstracted existing operating system architectures, and best practices that had 

evolved in previous implementations. Whereas operating system research in most cases 

starts from logical and computational considerations—and only afterwards tries to 

overcome practical implementation constraints—the development of Linux has followed 

the opposite route. Linux can therefore be seen as an example of grounded theory, where 

theoretical constructs emerge through observation and conceptualization of practice 

(c.f.Glaser & Strauss, 1967). 

Although there are similarities in the social systems that underlie scientific disciplines and 

Linux development, there are also important differences. The main difference is that the 

Linux community constructs a shared technological artifact. This artifact, i.e., software 

source code, enables social processes that seem to be in some ways more effective than 

those of traditional sciences. In the case of Linux, accumulation is an objective fact. 

Whereas the traditional view saw scientific progress as accumulation of increasingly 

accurate representations of reality, Linux development constructs its reality in an ongoing 

process. Linux, as a shared technological artifact, acts as a common reference point to the 

community. 

This shared artifact makes the dynamics of reputation different from those that organize 

scientific research. In contrast to traditional academic disciplines, where reputation is 

tightly personalized, in the Linux world reputation can also be attached to parts of the 

technological artifact. 
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There are also some potential explanations why the taboos of Linux community work. 

When newcomers have the possibility to make important contributions to the community 

project, they have strong incentives to do just that. In a way, the Linux community 

implements the idea that anyone can be a star, and it only depends on your effort. Here it 

perhaps reproduces some of the values and rhetoric of Silicon Valley. In practice, Linux 

development, however, is a collective effort, and achievement is possible only by using 

collectively created resources. As the developers build on existing contributions, the gift 

givers eventually get their gifts back in an improved format. There is no “tragedy of 

commons” or “winner takes all” in this space of technical artifacts, but only positive 

returns. As long as the quality system works, the more you give, the more you get. 

Under such conditions, a critical success factor is the capability to mobilize collective 

resources for promising new directions. This, in turn, requires that there are effective ways 

to manage attention. In addition to its important role in the allocation of control, 

reputation is also a key in the management of attention. However, as the case of Linux 

shows, a successful project may attract so much attention that strong social filters are 

needed to avoid overload at the centers of power. In addition to expectations that 

newcomers learn in the socialization to the community practices, also technology is used 

to maintain social filters. For example, the linux-kernel mailing list has so much traffic that 

it is impossible for most members to read all messages in detail. Many readers, therefore, 

use mail scripts that automatically delete mail. Sometimes deletion is based on the topic, 

but sometimes also based on the sender. Although Linux development has been 

characterized above as an open social process that occurs in a collaborating community, 

this, of course, does not mean that the community would not exclude some potential 

members. In practice, social exclusion is often implemented using the same computer 

programs that the community develops. 

In a system where every sub-project is potentially important to the overall success, and the 

only way to evaluate the value of contributions is by evaluating them after the results are 

generated, it is useful to celebrate the results, and downplay the status of individuals. Such 

a policy guarantees that authority is tightly linked to competence and responsibility, at the 
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same time making continuous revolution possible. This, however, also requires that the 

community understands that the celebration of results implicitly celebrates their producers. 

Therefore it is critical that the source code files keep an accurate and open record of the 

contributors to the project. In knowledge intensive work, commitment is critical, and any 

perceived unfair distribution of rewards very rapidly deteriorates commitment. 

The visible humility of tribal elders in the Linux community has, however, also another 

potential explanation. In technical terms, humility is useful for flexibility. When there is no 

rigid social hierarchy, the system can rapidly utilize emerging opportunities and develop 

into new directions. The growth of the system is not limited by its starting points; instead, 

it grows where the growth is fastest. This is of fundamental importance. Linux is not a 

pre-defined product; instead, its developers can plug in their own interests and interpret 

the possibilities of the accumulated system from their own perspectives. 

Linux, therefore, seems to represent a socio-technical system where resources consist of 

technological artifacts, tools and resources, social innovations embedded in institutions, 

and collective competences. These different components of the system develop 

simultaneously. A distinctive character of the open source model is that the boundary 

between ideas and implementation is not clear, and innovative ideas are often inseparable 

from their implementation. Source code is used as an external knowledge base and a 

cognitive tool, and cognitive resources are distributed among technological artifacts and 

humans. The development directions are to a large extent based on management of 

attention and accumulation of reputation. 

Linux development is based on a complex interplay between social practices and a focal 

technological artifact. Any single driving force, for example, financial rewards, cannot 

explain Linux development. We do things that allow us to use our competences and 

develop them, which our peers appreciate, and which are meaningful in the social context 

we are in. Linux development, therefore, is not a result of any specific economy based on 

transactions, bartering, or exchange of gifts. Instead, it is better characterized as a form of 

social life.  The artifact that organizes this form of life emerges as people go on with their 
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lives in ways that are meaningful to them. In this sense, Linux development is totally 

endogenous: the technological artifact can be seen as a side-effect of the fact that people 

live in a social world. 

Since Schumpeter economists have assumed that innovation is about economic change. 

More exactly, innovation has been defined as something that has direct economic 

implications. According to this view, technological change becomes innovation only when 

it changes production functions that relate economic inputs to economic outputs. The 

Linux case shows, however, that there can be technological change that is not captured by 

this definition of innovation. Yet, Linux obviously has potentially very important 

implications for software industry and for the rest of the economy. In other words, 

although there exist, of course, many links between technological and economic 

development in the modern society, they are not causally related. Therefore it is not 

obvious that we can explain economic growth by technological development. Nor it is 

obvious that we can explain technological development using economics. To put 

technology and economy under the same explanatory framework probably requires that 

we turn back to the sociology of economic processes and, indeed, explain economy itself 

as one of the sophisticated technologies of modern society.23 

Berman (1982) characterized the modern mentality as a set of culturally shared beliefs. 

According to Berman, modern mentality is composed of strong individuality, belief in self-

directed reason, assumption of the individual as the locus of control, commitment to 

progressive improvement, generally optimistic outlook, and a strong belief in meritocracy 

and social mobility. In the Linux community, these beliefs are easy to detect. For example, 

                                                

23 Simmel’s (1990) observation was that money is the most perfect tool. In this sense, we can say that 
economics never really neglected technological innovation, but was, indeed, a discipline that studied the 
implications of one technology, money. A sociological and cultural starting point, however, leads us to 
discuss economic systems as forms of socio-technical systems. I am not aware that such economic theories 
would currently exist. It seems, however, that they could be developed from the sociocultural activity 
theory (Leont'ev, 1978). Indeed, Engeström (1987) tried to develop a version of activity theory where 
exchange, division of labor, productive action, and technology are parts of the same structure of human 
activity. Engeström’s focus, however, was on theory of learning. 
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Raymond (1999) notes that in the hacker community the best craftsmanship wins. There is 

a very strict rhetoric of meritocracy. In theory, everyone is judged based on the quality of 

the results, and seniority comes into play only in those exceptional cases where peers 

cannot judge quality, or when ownership rules do not work. The great commitment and 

enthusiasm of Linux developers indicate that the developers believe that their efforts and 

contributions matter, and that the system, as a whole, is improved as a result of these 

efforts. The joy of hacking, in turn, is very much about getting control over a constructed 

world, and becoming a wizard in such a technological world. 

The way Linux developers live, indeed, reflects major currents in the modern world. This 

is also probably one of the reasons why the Linux community has been so successful in 

technological development. The social system of Linux community is not only aligned with 

the needs of the community itself. Instead, it is also aligned with important components of 

the broader social system where the development transpires. 

Although it is important to note that in other cultural settings such modern beliefs do not 

necessarily organize social systems, in this case technology development indeed is closely 

linked to the modern worldview. The culture of hacking is probably the most perfect 

implementation of modernity, and therefore it also produces technological products 

effectively. There are no deep internal conflicts within the culture of hacking that would 

compromise its efficiency. Indeed, as long as it builds itself around those technological 

artifacts that it produces, it is able to avoid many of those conflicts that make similar 

efficiency difficult in broader social contexts. 

The values of modern technological society are closely aligned with the values of the 

Linux development community. It would, indeed, be surprising to see successful 

technology development projects where the values of modernity were strongly contested. 

It is difficult to imagine successful collaborative development of technological artifacts in a 

cultural setting where the developers would believe in unpredictable accidents, irrelevance 

of one’s own interests and decisions, belief in the inevitable deterioration of the developed 

system, and questionability of the meaning of the whole effort. In this sense, successful 
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technology development requires modern values. But even within modern high-tech 

organizations there are important cultural differences that may constrain or facilitate open 

source development. For example, the Linux development model seems to require a 

culture with low power distance and low uncertainty avoidance. This has interesting 

consequences, as it is well known that the regions of the world differ greatly in this respect 

(Hofstede, 1991). Indeed, it may have some relevance that Finland and the U.S.A. happen 

to be countries with the least power distance and uncertainty avoidance. 

The Linux community consists of members who live in many different local cultures. In 

this sense, the Linux community is an interesting case of a “global” culture, and it might 

provide important insights of the mechanism that link regional cultural resources to global 

technological development. For example, Freeman, Clark, and Soete (1982), and Perez 

(1985) argued that the long cycles in economy require that forms of production, 

organizational structures, banking and credit system, and other social institutions change 

before productivity of a new key technology can be realized. The rigidity of social 

institutions, essentially, was the reason why long cycles are long. In the case of Linux we 

can see a process of socio-technical change where these assumptions are not necessarily 

appropriate. The social system is continuously negotiated, on-line, according to the 

problems and opportunities generated in the process. In this sense, Linux could also be 

analyzed as an example of socio-technical development that escapes the logic of long 

cycles. The innovation process that underlies Linux development, therefore, could also 

give a concrete example of what the discourse on “new economy” is about. 

Although social and scientific progress has often been associated with meritocracy, social 

mobility, and individualistic appropriation of opportunities, in the case of Linux this ideal 

world is in fact implemented. Here Linux development also differs from any system of 

economy. People construct the same collective artifact, interpret it from their own 

perspectives, and adapt it for their own practices. The dynamics of the technological 

artifact and the social system that produces it are well aligned. The speed of development 

is fast because there are no fundamental contradictions in the co-evolution of the 

community and its artifacts. 
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Linux development proceeds in such an expanding galaxy of technical artifacts and social 

relations. Fired by the engines of modernity, its boundaries explode into the space of 

technological possibilities. Indeed, one cannot but wonder whether it is just because of the 

abstract nature of this space that it has been so successful in its emergent goals. In the 

world of Linux, modern technological economy is perfectly realized. And—

paradoxically—we find ourselves once again in the beginning of time, in the economy of 

gifts. 
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